Of all the great inventions perhaps the most striking because of the suddenness with which they have come upon us are those relating to the navigation of the air. Until a few years ago "to fly" was taken to typify the impossible. Now we see men flying every day and there is scarcely anyone who has not had a friend or relative in the Flying Corps. Recent experience, too, has shown that this one invention has revolutionized warfare in several important departments, particularly in the use of very heavy long-range artillery. Huge guns, hidden in a hollow or behind a hill, have been set to throw shells on to an unseen target, while a man in an aeroplane above watches the result and signals back by wireless. Thus by the aid of aircraft the power of artillery has been immensely increased. Again, aircraft have superseded cavalry for reconnaissance purposes, that is to say, for finding out the enemy's strength and preparedness. Only a few years ago a General who needed information as to his foe would send forward a screen of cavalrymen who would cautiously creep forward until, judging by what they could see and by what sort of a reception The airman, therefore, goes up and sails over the enemy. He may be simply observing for some particular unit of artillery, or he may be sent to find out things generally—nothing in particular, but anything which seems likely to be of use. He looks out intently and carefully, moreover he not only looks with his own eyes: as has just been mentioned, he takes photographs, which can be developed on his return and studied minutely at leisure. He may, or may not, according to circumstances, send back reports of an urgent nature by wireless telegraphy. In some cases these duties are all carried out by one man, but in others there are two: one the pilot who looks after the working of the machine, and the other the observer whose whole attention can thus be devoted to scrutinizing the enemy. Of course, when aeroplanes go on scouting expeditions like this they are apt to be attacked by the enemy both by anti-aircraft guns and also by other aeroplanes. The former can only be met by high speed and the steering of a somewhat erratic The other aeroplanes, however, must be met by actual fighting. The only way to defeat them is to go for them and attack them, a machine-gun being the most usual weapon. Besides those who go up for definite scouting operations or to "spot," as it is termed, for the artillery, there are other machines whose sole duty is fighting. These go up for the purpose of driving off those machines of the enemy which may come prying, or to keep the ground, so to speak, for the scouting machines and enable them to do their work unmolested. Then there are, of course, still others whose function is to carry out bombing expeditions. All these different duties call for different types of machine, but I do not propose to go into the differences here since changes are so rapid in this particular field that only the general principles remain unchanged for any length of time. What has just been hinted, however, as to the different kinds of work which the aeroplane is called upon to do will enable the reader to see why different kinds of machines are needed. So far we have only spoken of aeroplanes. There is a kind of machine sometimes called a hydroplane but which we are gradually getting to call a sea-plane. The latter term is much to be preferred, since the former is also in use to denote a special kind of high-speed boat. Now a sea-plane only differs from an aeroplane in In some instances this float idea is made so pronounced a feature of the machine that it becomes a flying boat. Sea-planes are therefore really only aeroplanes specially adapted for a certain purpose. They are really just as much aeroplanes as those machines which go by that name. It is somewhat unfortunate, therefore, that a separate term is used to describe them. But there it is: names grow in a very curious way, not always in a logical way, and a name having once stuck to a thing in the mind of the public it is very difficult to make any alteration. Aeroplanes, then, may be said to include a subdivision known as sea-planes, and for the rest of this chapter what is said of aeroplanes will apply to sea-planes also. Without doubt, these are the fastest vehicles in existence. Many of them can exceed a speed of a hundred miles an hour. Consequently, the pilot lives while he is aloft in the equivalent of a furious gale, and it would seem as if that must produce such a degree of cold as to be almost unendurable. Moreover, it appears that this cold is almost as bad in summer as in winter, for the temperature high up in the air is much the same all the year round. The consequent muffling up with thick clothes and gloves, while it mitigates the cold, must add greatly to the pilot's difficulties in managing his machine. The Moreover, the handling of such a machine in the air, particularly if a fight is included in the programme, appeals strongly to the sporting instincts of young men, so much so that during the War, in spite of the dangers and hardships, and the continual loss of life, there was never a dearth of men anxious to become pilots. Owing to these considerations, too, it follows that the best aviators are to be found in those lands where the people are most devoted to sports. Hence, as we have it on excellent authority, the young men of Great Britain and the United States, with their love of adventure and their strong sporting instincts, make better men in the air than the Germans. But really we are more concerned here with the machines than with the men, so let us get back to our subject. The aeroplane consists of one or more "planes" or surfaces which, on being held at a certain slant and then pushed forward rise or remain supported in the air. Therefore the plane or planes need to be supplemented by first a tail and horizontal rudder to hold them at the correct slant, and an engine and propeller to drive them forward. It is not necessary, here, to go over the history of So we will look only at the construction of the aeroplane in a general way, to do which we must first consider why it flies at all. It is due to the well-established law that action is always accompanied by a reaction equally strong and in the opposite direction. When a gun is fired the explosion not only drives the shell forward but equally drives the gun itself backward. The backward energy of the recoil is precisely equal to the forward energy of the shell. The two are equal but in opposite directions. In like manner a rocket ascends because the hot gases from the paper cylinder blow forcibly downwards, thereby producing an equal reaction upwards. Now the plane of a flying machine is held with its forward edge a little higher than its rear edge, so that as it is pushed along it tends to catch the air and throw it downwards. Hence the reaction tends to lift the plane upwards. When the machine starts the reaction is not sufficient to overcome gravity, which is trying to hold the machine down upon the ground, but as the speed increases and the air is thrust down with more and more violence the point is ultimately reached when the reaction is able to overcome gravity and the machine ascends. When a sufficient height is reached, the pilot alters the position of his horizontal rudder or "elevator" so as to make the position of the plane more flat, with the result that it throws the air downwards to a less extent, and the reaction is thereby reduced until it is only just sufficient to keep the machine at the same height. To descend, the position of the plane is made still flatter, the reaction is reduced still more and gravity has its way once again, bringing the machine to earth. In other words, the machine acts under the influence of two forces: the downward pull of gravity and the upward reaction due to the action of the machine in throwing the air downward. The former never varies, the latter can be varied by the pilot at will: he can increase it by increasing the speed or by increasing the tilt of his plane or planes: he can reduce it by diminishing the speed or the tilt. Since generally speaking the speed of his engine will remain constant, he rises, remains at the same height or falls, at will, by the simple manipulation of the elevator through which he can change the tilt or inclination. Most machines have a fixed tail as well as a horizontal rudder or elevator, the same being so set that it tends to keep the plane in a certain normal inclination, the elevator being called in to increase that or diminish it as may be required. In addition to the elevator there is also another rudder of the ordinary kind, such as every ship and boat has, for guiding the machine to right or left. The elevator steers up and down, the rudder steers to either hand. Provision is also made for balancing the machine. This is sometimes in the form of two small planes hinged to the main plane, one at either end, connected together and to a controlling lever by wires, so that by their use the pilot can steer the right-hand side of his machine upwards and the left-hand downward, or vice versa, if through any cause he finds a tendency to capsize. In some machines the same effect is produced not by separate planes but by pulling the main plane itself somewhat out of shape, but precisely the same principle is involved. The planes are usually made with a slight curve in them, so that they may the better catch the air and "scoop" it downwards, so to speak. They usually consist of fabric specially made for the purpose, stretched upon a light wooden framework. The whole framework is usually of wood with metal fittings frequently made of aluminium for the sake of lightness. The engines have been mentioned in another chapter. The propeller which is almost invariably fixed directly upon the shaft of the engine has two blades only and not three as is usual with those of ships. Precisely why this should be so is not clear, but experience shows that two-bladed propellers are preferable for this work. They are made of wood, several layers being glued together under pressure, the resulting log being then carved out to the required shape. This makes a stronger thing than it would be if cut out of a single piece of wood. All parts, engine, elevator, rudder and balancing In monoplanes there is but one main plane, resembling a pair of bird's wings. Or if we care to look upon it as two planes, one each side of the "body," then we must call it a pair. Since the name "mono" indicates one it is best to think of it as one plane although it may be in two parts. The biplane has, as its name implies, two planes, but in that case there can be no doubt, since they are placed one above the other. Machines have been made with three planes and even with as many as five, but monoplanes and biplanes appear to hold the field. It is not possible for an aeroplane to be in any sense armoured for protection against bullets: for defence the pilot has to depend upon his own cunning man[oe]uvres combined with the fast speed at which he can move. For offensive purposes he usually has a machine gun mounted right in front of him with which he can pour a stream of bullets into an opponent or even, by flying low, he can attack a body of infantry. It is recorded that one German prisoner during the war, speaking of the daring of the British pilots in thus attacking men on foot, exclaimed, "They will pull the caps off our heads next." Some of the aeroplanes have their propeller behind the pilot and some have it in front. The latter, to distinguish them, are called "Tractor" machines, since in their case the propeller pulls them along. Now it is easy to see that a difficulty arises in such cases through the best position for the gun being It is easy to see that when an aeroplane is manned by a single man, as is often the case, he must have his hands very full indeed, what with the machine itself and the gun as well. In fact, he often has to leave the machine for a short time to look after itself while he busies himself with the gun. Now there we see a sign of the wonderful work which has been done in the course of but a few years in the perfecting of the aeroplane, the result of a series of improvements in detail which make but a dreary story if related but which make all the difference between the risky, uncertain machine of a few years ago and the safe, reliable machine of to-day. Modern machines are inherently stable. The older ones had the elements of stability in them but they were so crudely proportioned that these inherent qualities did not have a chance to come into play. If one drops a flat card edgewise from a height it seems as if it ought to fall straight down to the ground. Yet we all know from experience that it seldom does anything of the kind. Instead, it assumes a position somewhere near horizontal and then descends in a series of swoops from side to side. The aeroplane is sustained in the air through the upward pressure of the air resisting the downward pull of gravity. That has been fully explained already. Now gravity, as we all know, acts upon every part of a body whether it be an aeroplane or anything else. But for practical purposes, we may regard its action as concentrated at one particular point in that body, called the "centre of gravity." Likewise, the upward pressure of the air acts upon the whole of the under surface of the plane or planes, yet we may regard it as concentrated at a certain point called the "centre of pressure." Further, we all know from experience that a pendulum or other suspended body is only still when its centre of gravity is exactly under the point of suspension. If we move it to either side it will swing back again. In just the same way, the only position in which an aeroplane will remain steady is that in which the centre of gravity is exactly under the point of suspension or, in other words, the centre of pressure. For the centre of pressure in the aeroplane is precisely similar to the point of suspension of a pendulum. Let us, then, picture to ourselves an aeroplane flying along on a horizontal course with this happy state of things prevailing. Something we will suppose occurs to upset it with the result that it begins to dive downwards. It is then in the position of sliding downhill and instantly its speed increases in consequence. That increase of speed causes the air to A moment's reflection will show that with the centre of pressure (or point of suspension) in advance of the centre of gravity there is a tendency for the machine to turn upwards again, or, in other words, to right itself. If, on the other hand, the initial upset causes it to shoot upwards the speed instantly falls off and the centre of pressure retreats, turning the machine downwards once more. And the same principle applies whatever the disturbance may be. Instantly and automatically a turning force comes into play which tends to check and ultimately to correct what has gone wrong. This principle explains the behaviour of the card dropped from an upstairs window and, no doubt, as has been said, it operated also in the early flying machines, but in their case other factors caused disturbing elements with which the self-righting tendency was not strong enough to cope. As time went on, however, experience taught the makers how to avoid these disturbing factors until at last the self-righting tendency was able to act effectively, thus producing the aeroplane which is inherently stable and which will, for short periods at all events, fly safely without attention from its pilot. Each little improvement in this direction was an invention. Of course, there were certain men whose But perhaps someone will say, how can you possibly talk about final results in a matter which is still in its infancy? The answer to that is that so far as the safe, "flyable" machine is concerned, it has arrived. Little now remains to be done in that direction. Further improvements there will, of course, be, but the great fundamental problems of flight have been solved. |