WIRELESS TELEPHONY AND ALTERNATING CURRENTS The developments in wireless communication have been so rapid during recent years that a more extended account, than that given in Art. 417 of the apparatus and methods used at the present time, seems desirable. The study of Alternating Currents is also included with the idea that it will make the text more complete and of wider usefulness. Wireless Telephony425. The Wireless Telephone.—One of the most important developments in wireless communication in recent years has been in wireless telephony. We realize its possibilities, when we hear of the achievements of talking across an ocean or between airplanes and the ground. The wireless telephone can be best understood by comparing it with the common telephone. When the latter is in use, a direct current flows continually through the instrument. (See Arts. 312-316.) When a person speaks into the transmitter, the sound waves of the voice cause the diaphragm to vibrate, this action causes rapid changes in the resistance of the transmitter, which in turn causes the direct current to fluctuate just in step with the pulses of the voice waves. This fluctuating direct current passes through the primary of an induction coil, producing in the secondary an intensified alternating current. This passes over the line wires to the receiver where it produces 426. The Action of the Wireless Telephone.—In the wireless telephone we have a continuous stream of electric waves of high frequency. (See Fig. 425A.) This stream of electric waves corresponds to the current that flows through the transmitter in the wire telephone. These waves are of such high frequency that even though we had a receiver diaphragm vibrating in step with the waves, we could not hear the sound because the human ear cannot hear a sound which consists of more than about 40,000 vibrations per second. The sound waves act upon this stream of waves very much, as in the wire telephone, the transmitter acts to modify the line current. The impulses caused by the voice are much slower than the electric waves first mentioned and these slower impulses are reproduced in the receiver. Not only are these slower impulses reproduced but they are amplified, that is, produced with greater energy than the impulses impressed on the stream of waves. Fig. 427. The Vacuum Tube or Audion.—The device by which all of this is accomplished is the vacuum tube. (See Fig. 426.) This tube contains three electrodes. First, a filament (F, in Fig. 428) which is heated by a current from a battery (B1, Fig. 428) and because it is heated, sends out a stream of electrons. Second, the plate which forms the anode of the circuit from battery, B2. This plate receives the electrons which are thrown off by the heated filament, hence a current flows through the circuit of B2; the discharge through the tube depending on the e.m.f. between the filament and the Fig. 429.—View of wireless telephone set. The vacuum tube in the transmitting circuit also amplifies the impulses, that is, the energy of the waves given out is greater than that of the impulses which produce them, the additional energy being derived from the battery sending current through the plate and filament. In operation, the filament and the plate are connected to a battery with a condenser (VC) and an inductance coil (I) in the circuit, as shown in Fig. 428. Photograph of a complete modern wireless telephone set is shown in Fig. 429. Alternating Currents428. Alternating currents are of interest to us because of their general commercial use. To understand the reason for the extensive application of alternating currents it is necessary to learn the fundamental principles which pertain to them. The production of such currents has already been explained in Arts. 300-304. It should be remembered that the current developed in the armature of a dynamo is alternating. A dynamo may deliver a direct or an alternating current, depending on the method of collecting the current from the armature. If a commutator is used, the machine delivers direct current, if slip rings are employed, an alternating current is delivered. 429. The Magnetic Field of an Alternating Current.—The magnetic field of a direct current has been considered in Arts. 255-256. It has been shown to be arranged in circles about the conductor, according to the Right Hand Rule. (See Figs. 229 and 230.) These facts will help one to understand the following experiment: If a number of magnetic compasses be arranged in a circle about a straight vertical wire carrying a direct current, the compass needles will point out a circle about the wire. (See Fig. 430, A.) If now the current be reversed the compass needles will reverse themselves and point in a direction just opposite to that taken at first. (See Fig. 430, B.) This will be clear if you imagine yourself walking around the wire in the direction the compass needles pointed at first, and then walking around the wire in the reverse direction. This illustrates what happens in the field of an alternating current. The field reverses each time the current reverses. The magnetic field of an alternating current not only rapidly reverses itself, but also continually changes in intensity. At the instant when the current reverses, the force of the magnetic field is zero since the current at that instant is zero. As the current begins flowing and increases Fig. 430.—Arrangement of compasses about a wire carrying an alternating current. 430. Transformers.—The transformer has been described in Arts. 309-310. The principle of the transformer may be illustrated by the following experiment: A coil having several hundred turns of No. 18 d.c.c. copper wire is placed over one arm of a "U" shaped iron core (see Fig. 431) and then Fig. 431.—Diagram of a transformer. This experiment illustrates the construction and action of a transformer. In a commercial transformer, the two windings are on a closed magnetic circuit. (See Figs. 304 and 305, p. 346.) To keep the coils insulated, the transformer is placed in an iron "housing" and covered with oil. These "housings," or transformer cases are generally attached to poles near buildings in which alternating current is used. 431. Voltage Relation in a Transformer.—In the experiment described above, a bell was rung by an induced current produced in the secondary coil. The induced e.m.f. was less than the voltage of the primary coil partly because there was some magnetic leakage, but mainly 432. Power Loss in a Transformer.—When the voltage is "stepped up" in a transformer, do we gain power? To answer this question we must remember that electric power does not depend on voltage alone but on the product of e.m.f. and current intensity. (See Art. 291.) By tests with a.-c. voltmeters and ammeters, we find that when the secondary e.m.f. is greater than the primary e.m.f., the secondary current intensity is less than that in the primary. It is also found that the power developed is less than the power received by the transformer, i.e., the "output" is less than the "input" as we would expect from the law of machines. The power loss is mainly due to the work required to reverse the magnetism, that is, to continually reverse the position of the iron molecules. (See Art. 205.) The energy lost in this manner is known as "core loss" since it occurs in the Fig. 432.—Diagram of "bell-ringing" transformer. 433. Choke Coils and Inductance.—If we refer to Fig. 432 we see that the primary winding of the bell ringing transformer is connected across the line. This winding forms a closed circuit whether the bell is ringing or not. The resistance of this winding is small. Let us assume it to be one ohm. With a one ohm resistance connected across a 110 volt line we might expect a current of 110 amperes. This is certainly what we should get if we were to connect a one ohm resistance across a line having 110 volts direct. The primary would form a short circuit if the current were direct. But the fact is that practically no current flows through the primary winding when the bell is not ringing. Herein lies one of the important differences between alternating and direct currents. With an alternating current the primary winding of our transformer Fig. 433.—A circuit containing a choke coil. Let Fig. 433 represent a choke coil. Since alternating current is used, the magnetic field is continually changing. Each turn of wire has its own magnetic field. The lines of force of turn number 1 expand and contract and as they do so they move across turns 2, 3 and so on. In like manner the lines of force from each turn of wire move across the other turns. In other words the coil is cutting its own lines of force. Now whenever an electric conductor cuts magnetic lines of force an electromotive force is induced in the conductor. There is then an e.m.f. induced in the coil by its own magnetic field. This induced e.m.f. on the whole opposes the applied e.m.f.; in the primary of our bell ringing transformer the induced e.m.f. opposes the e.m.f. of the line to such an extent as to reduce the current almost to zero. Inductance is the action of an alternating current in inducing an opposing e.m.f. in the coil in which the current is flowing. Since this opposing e.m.f. is induced in the coil by its own magnetic field this action is also called self-induction. In a transformer the action of the field of the primary upon the secondary is mutual induction; while the action of the field of the primary in choking the current in the primary itself is self-induction or inductance. A coil having a single winding and used to introduce inductance in a Fig. 434.—Diagram showing graphically an alternating current with a "lag" of 30° behind its electromotive force. Self-induction causes the current to lag, that is, the current does not quite reach its maximum at the instant the voltage reaches its maximum. Fig. 434 shows graphically an e.m.f. and a lagging current. In this figure the maximum current is shown following the maximum voltage at an interval of 30 degrees. In other words the armature in a two-pole field must turn 30 degrees from the position of maximum voltage before the current in the coil, where the self-induction occurs, reaches its maximum. 434. Reactance and Impedance.—A choke coil has resistance as well as inductance. Its resistance can be found by the voltmeter-ammeter method, using a direct current. (See Art. 278.) Let us take for example the primary winding of a bell ringing transformer. Using a direct current and testing the coil with a voltmeter and ammeter we find its resistance to be, let us say, one ohm. If we connect the same coil across a 110 volt a.-c. line we find the current Fig. 435.—The relation between resistance, reactance and impedance. Impedance, however, does not equal the sum of resistance and reactance. The relation between these three quantities is similar to that between the three sides of a right triangle, in which the impedance represents the hypotenuse, and the resistance and reactance the other two sides. See Fig. 435 which indicates that Resistance2 + Reactance2 = Impedance2, or (R2 + X2 = Z2). (X = reactance.) To illustrate this relation; suppose the primary of a transformer has 10 ohms impedance and 8 ohms resistance, then the reactance equals 102 - 82 Exercises1. Find the reactance of a choke coil having a resistance of 10 ohms, when its impedance is 50 ohms. How great a current flows through this coil if the terminal voltage is 110 volts? 2. When the bell is ringing, the primary of a bell ringing transformer has an appreciable current. Suppose this current is 0.2 ampere. What is the impedance if the voltage of the line is 115 volts? What is the reactance if the resistance is 1 ohm? 3. The primary of a large transformer has a terminal voltage of 6000 volts and a current of 600 amperes. What is the impedance? If the resistance is 6 ohms, what is the reactance? Fig. 436.—A telephone set showing a condenser used in the circuit of the "ringer." 435.—The electric condenser (see Art. 231) is a very useful device in a.-c. circuits; e.g., in telephone sets used in cities, a condenser is used in the ringing circuit, as shown in Fig. 436. Alternating current is required to ring such a bell and a condenser permits an a.-c. current to act through it, although it entirely prevents the flow of a direct current. This peculiar action will now be explained. 436. The action of a condenser in an alternating current circuit may be illustrated by the following experiment. Connect twelve, 1 m.f. (microfarad) condensers, in parallel, and then attach them to a 110 volt a.-c. line so that an Fig. 437.—Twelve condensers in circuit with an incandescent lamp. The unit of capacity is the Farad. Capacity is defined as the quantity of electricity per second that flows into a condenser when the voltage at the terminals changes at the rate of one volt per second. If a change of one volt per second causes one coulomb to flow per second, that is, a current of one ampere, the capacity is one farad. The condensers used in the above experiment have a capacity of one microfarad, or one millionth of a farad. A condenser, on account of its capacity, causes an a.-c. current to lead the voltage, that is the current reaches its maximum value before the voltage does. In this respect a condenser has an effect opposite to that of the self-induction of a choke coil (the latter causing the current to "lag"). (See Fig. 435.) 437. Transmission of Electric Power.—A field of peculiar usefulness for a.-c. currents is in the economical transmission of electric power. This fact is due to the following reasons: (a) The loss of electrical power in a transmission line is due to the production of heat; the heat produced being proportional to I2R, or to the square of the current intensity. Any lessening of the current flow required to transmit a given power will therefore increase the efficiency of transmission. (b) In order to employ a small current in transmitting a large amount of power, we must use a very high e.m.f. Such high electromotive forces, say from 60,000 to 100,000 volts, can be obtained only by the use of a.-c. transformers, since it is not practicable to build a direct current generator capable of producing 60,000 volts. In large power transmission systems, a.-c. generators are used to produce powerful alternating currents. The e.m.f. is then stepped up to a suitable voltage (2300-100,000) by transformers and sent over transmission lines to the various places where the power is to be used; at these places suitable transformers "step-down" the e.m.f. to a convenient or safe voltage for use. (See Fig. 442 of a transmission line and Fig. 438 of a large power transmission system, and Fig. 439 of an a.-c. generator and power plant.) 438. Power Factor.—The power factor is a matter of interest and importance in the use of a.-c. machines. Its meaning and use may be learned from the following explanation: In a direct current circuit, watts equals Fig. 439.—Power house showing alternators, direct connected to horizontal hydraulic turbines. Note the direct current "exciter" on end of shaft of alternator. (Courtesy of General Electric Co.) 439. Single-phase Currents.—There are several kinds of a.-c. currents. One of the most common is the single-phase. It is simply the common a.-c. current used for light and power in the average home, and uses a two-wire circuit around which the current is rapidly alternating. Fig. 440 illustrates the changes of e.m.f. in an a.-c. single-phase current. It may be produced by a single coil rotating in a magnetic field. The curve of Fig. 440 represents one cycle, that is, one complete series of changes in the electromotive forces. At the end of the cycle the armature is in the same condition as at the beginning so far as the magnetic field is concerned. It then begins a new cycle. The ordinary commercial alternating current has a frequency of 60, that is 60 cycles per second. One rotation produces as many cycles as there are pairs of poles. For example, if there are 48 poles in the generator field, one rotation produces 24 cycles. Fig. 440.—Graph showing the e.m.f. changes of a single-phase current for one "cycle." 440. Three-phase Currents.—Now suppose we have three coils as in Fig. 441, the coils being evenly spaced, or 120 degrees apart, at A, B, and C. If the coils are rotated in a magnetic field, each will produce an electromotive Fig. 441.—Graph showing the e.m.f. changes of a three-phase current for one "cycle." 441. Three-wire Transmission.—The currents produced in the three coils just described undergo precisely the same changes as those represented in the graph (Fig. 441) for the three electromotive forces. Careful examination of the graph will show that at any point the sum of the plus e.m.f's. equals the sum of the minus e.m.f's. In other words the algebraic sum of the three e.m.f's. is zero. Therefore if we properly connect a transmission line of three wires to the generator, the sum of the currents Fig. 442.—A "tower" supporting three, three-phase circuits of a high tension transmission line. 442. Alternators.—A dynamo which delivers alternating current is known as an alternator. Commercial alternators have many pairs of poles in the field and as a rule the field rotates while the armature is stationary. The field must be supplied with direct current for the polarity of each coil in the field must remain unchanged. Usually Fig. 443.—Diagram of a "Series Motor." 443. The A.-C. Series Motors.—The only type of motor that will run on either alternating or direct current is the series motor. The "universal" motor used in household appliances such as electric fans, vacuum cleaners, etc., is a series motor. The reason a series motor will run on either direct or alternating current is because the direction of rotation of the armature of a motor depends on (a) the direction of the current in the armature, and (b) the polarity of the field. Reversing either of these alone, reverses the direction of rotation of the armature, while reversing both at the same instant leaves the direction of rotation unchanged. Fig. 443 is a diagram of a series motor since the field coils and armature Fig. 444.—Diagram of a gramme ring. It is shown connected to a single-phase current so as to produce a rotating magnetic field, similar to that obtained with a three-phase current. (Ahrens, Harley and Burns.) Fig. 445.—The "stator" of an induction motor. 444. The Induction Motor.—Another common type of a.-c. motor is the induction motor. Its advantage lies in its simplicity. It has neither commutator nor brushes, the armature having no connection with an external circuit. If the wires of a three-phase line be connected to a coil wound in the form of a gramme ring, the connections being 120 degrees apart as in Fig. 444, the magnetic field within this coil will change in the same manner as if a magnet were spinning upon a pivot at the center of the coil. Suppose the N pole at one instant is at A, in one-third of a cycle it moves to B, in another third to C, and in one cycle it makes a complete revolution. Thus we have a rotating magnetic field. If a cup of some non-magnetic metal such as aluminium or copper be placed on a pivot in the center of this coil, the cup is cut by the Fig. 446.—The "rotor" of an induction motor. Fig. 447.—Diagram illustrating the principle of the synchronous motor. The armature coil passes the position shown in the figure at the instant the current in the line reverses. Thus the armature keeps with the line current, making one revolution with each "cycle." 445. A synchronous motor is one that keeps step with the alterations of an alternating current. The line current is fed into the armature by means of two slip rings and brushes. The principle of the synchronous motor is illustrated in Fig. 447. This shows a motor having a two-pole field. The armature current must be reversed In practice the synchronous motor has a number of pairs of field poles. It is essentially an alternating current generator running as a motor. One of the principal uses of the synchronous motor is that of a converter, receiving alternating current and delivering direct current. Synchronous motors are also used in transmission lines to aid in maintaining constant voltage. Important TopicsThe wireless telephone, essential parts, action, arrangement. Alternating currents, alternating fields. Transformers, voltage relation of coils, power and core losses. Self-induction, inductance, and coke coils, uses, applications. Impedance, reactance, and resistance; relation and effects. Condensers, uses and applications with a-c. circuits. Alternating current power transmission; uses, advantages. Power factor, lag, lead, volt-amperes, true watts. Single- and three-phase currents; uses and nature of each. Three-wire transmission systems, alternators, construction, and action. A-c. motors, series, induction, synchronous. |