INDUCED CURRENTS (1) Electromagnetic Induction296. Current Induced by a Magnet.—The discovery in 1819 that a current in a conductor can deflect a magnetic needle or that it has a magnetic effect, led to many attempts to produce an electric current by means of a magnet. It was not until about 1831, however, that Joseph Henry in America and Michael Faraday in England, independently discovered how to accomplish this important result. At the present time, voltaic cells produce but a very small part of the current electricity used. Practically all that is employed for power, light, heat, and electrolysis is produced by the use of magnetic fields, or by electromagnetic induction. 297. Laws of Induced Currents. Connect a coil of 400 or more turns of No. 22 insulated copper wire to a sensitive galvanometer. (See Fig. 279.) Now insert a bar magnet in the coil. A sudden movement of the galvanometer will be noticed, indicating the production of a current. When the magnet stops moving, however, the current stops, and the coil of the galvanometer returns to its first position. If now the magnet is removed, a movement of the galvanometer coil in the opposite direction is noticed. This action may be repeated as often as desired with similar results. Careful experiments have shown that it is the magnetic field of the magnet that produces the action, and that Connect its ends to a sensitive galvanometer and hold it at right angles to the earth's field. Then quickly revolve the coil through 180 degrees and note the movement of the galvanometer. Reverse the coil and the galvanometer swings in the opposite direction. If the magnet in Fig. 279 is moved in and out of the coil at first slowly and later swiftly, small and large deflections of the galvanometer coil are noticed. The quicker the movement of the magnetic field the greater are the galvanometer deflections produced. This leads to Law II. 298. The magneto is a device that illustrates the laws of induced currents stated in Art. 297. The magneto (see Fig. 281), consists of several permanent, "U"-shaped magnets placed side by side. Between the poles of these magnets is placed a slotted iron cylinder having a coil of many turns of fine insulated copper wire wound in the slot as in Fig. 282. The cylinder and coil form what is called an armature. The armature is mounted so as to be revolved between the poles of the "U"-shaped magnets by means of a handle. As the armature revolves, the lines of force from the magnets pass through the coil first in one direction and then in the other. This repeated change in the lines of force passing through the coil produces an E.M.F. which may be felt by holding in the hands the two wires leading from the armature coil. On turning the armature faster the current is felt much stronger, showing that the E.M.F. in the coil increases as the rate of cutting the magnetic lines of force by the coils increases. 299. Lenz's Law.—While one is turning the armature of a magneto if the two wires leading from its coil are connected, forming what is called a "short circuit," the difficulty of turning the armature is at once increased. If now the circuit is broken, the armature turns as easily A striking illustration of the opposition offered by the field of the induced current to that of the inducing field is afforded by taking a strong electromagnet (see Fig. 284) and suspending a sheet of copper so as to swing freely between the poles. When no current flows through the magnet the sheet swings easily for some time. When, however, the coils are magnetized, the copper sheet has induced within it, currents that set up magnetic fields strongly opposing the motion, the swinging being stopped almost instantly. The principle is applied in good ammeters and voltmeters to prevent the swinging of the needle when deflected. The current induced in the metal form on which is wound the galvanometer coil is sufficient to make the needle practically "dead beat." 300. The Magneto and the Dynamo.—Magnetos are used to develop small currents, such as are used for telephone signals, and for operating the sparking devices of gasoline engines. They are therefore found in automobiles containing gasoline motors. The most important device for producing electric currents by electromagnetic induction, however, is the dynamo. It is employed whenever large currents are desired. The principle of this device is similar to that of the magneto except that it contains 301. The Magnetic Fields of Generators.—In the magneto, the magnetic field is produced by permanent steel magnets. In dynamos powerful electromagnets are used. The latter are sometimes excited by currents from some other source, but usually current from the armature is sent around the field coils to produce the magnetic fields. Dynamos are classified according to the manner in which the current is sent to their field coils. A. The series wound dynamo (see Fig. 285) is arranged so that all of the current produced by the armature is sent through coils of coarse wire upon the fields, after flowing through the external circuit. B. The shunt wound dynamo (see Fig. 286) sends a part only of the current produced through the field coils. The latter are of many turns of fine wire so as to use as little current as possible. The greater part of the current goes to the main circuit. If the number of lamps or motors C. the compound wound dynamo. This dynamo has both shunt and series coils upon its fields. (See Fig. 287.) If more current is drawn into the main circuit with this dynamo, the series coils produce a stronger field compensating for the weaker field of the shunt coils, so that uniform voltage is maintained. The compound wound generator is therefore the one most commonly employed. Important Topics1. Laws of electromagnetic induction (a) conditions, (b) E.M.F., (c) direction. 2. Devices, (a) magneto, (b) dynamo: series, shunt, compound. 3. Illustrations of the laws. Exercises1. Under what conditions may an electric current be produced by a magnet? 2. Show how Lenz's Law, follows from the principle of conservation of energy. 3. A bar magnet is fixed upright with its north-seeking pole upward. A coil is thrust down over the magnet. What is the direction of the current induced in the coil? Explain. 4. In what two ways may a current be induced in a closed coil? 5. What method is employed in the magneto? In the dynamo? 6. What is the nature of the current produced in the armature coil of a magneto, that is, is it direct or alternating? Why? 7. What is the resistance of a 20-watt tungsten lamp if the E.M.F. is 115 volts? 8. Find the resistance of a 40-watt tungsten lamp when the voltage is 115? How much heat will it produce per minute? 9. An Edison storage battery cell on a test gave a discharge of 30 amperes. The average voltage was 1.19. What was the resistance of the cell? 10. Eight storage cells are connected in series. Each has an E.M.F. of 1.2 volts and an internal resistance of 0.03 ohms. What will be the current flowing through a voltmeter having 500 ohms resistance in circuit with them? (2) The Dynamo and the Motor302. The Dynamo may be defined as a machine for transforming mechanical energy into the energy of electric currents by electromagnetic induction. Although electromagnetic induction was discovered in 1821, practical dynamos were not built for about 40 years or until between 1860 and 1870. The great development in the production and use of electric currents has come since the latter date. The principle parts of the dynamo are (a) the field magnet, (b) the armature, (c) the commutator or collecting rings, (d) the brushes. Fig. 288 shows several common methods of arranging the field coils and the armature. The field coils vary in number and position. The purpose of their construction is always to send the largest possible number of lines of force through the armature. Some dynamos are bipolar, or have two poles, others are multipolar or have more than two. In Fig. 288 No. 4 has four poles. The armature of a dynamo differs from a magneto armature in that it consists of a series of coils of 303. Methods of Collecting Current from the Armature.—The electric currents produced in the armature are conducted away by special sliding contacts. The stationary part of the sliding contact is called a brush. The moving part is a slip ring or a commutator. Fig. 290 shows an armature coil connected to slip rings. As the armature revolves, the coils and slip rings revolve with it. The two ends of the armature coils are connected to the two rings respectively. Now as the armature revolves it cuts the lines of force first in one direction and then in the other. This produces in the coils an E.M.F. first one way and then the other. This E.M.F. sets up a current which is conducted to the outside circuits through the slip rings and 304. The Commutator.—For a dynamo to deliver a direct current it must carry upon the shaft of the armature a commutator. The commutator is used to reverse the connections of the ends of the armature coils at the instant that the current changes its direction in the armature. This reversal of connection when the direction of current changes, keeps the current in the outside circuit flowing in the same direction. Fig. 291 is a diagram of an armature with a commutator. The commutator is a split ring, having as many parts or segments as there are coils upon the armature. The brushes touch opposite points upon the commutator as they slide over the surface of the latter. Suppose that the armature viewed from the commutator end rotates in a counter-clockwise direction, also that the currents from the upper part move toward the commutator and out the top brush. As the armature revolves, its coils soon begin to cut the force lines in the opposite direction. This change in the direction of cutting the lines of force causes the current to reverse in the coils of the armature. At the instant the current changes in direction, what was the upper segment A practical dynamo, however, has many coils upon its The current represented in Fig. 292 (2) is called a pulsating current. 305. The electric motor is a machine which transforms the energy of an electric current into mechanical energy or motion. The direct current motor consists of the same essential parts as a direct current dynamo, viz., the field magnet, armature, commutator and brushes. Its operation is readily comprehended after one understands the following experiment: Set up two bar electromagnets with unlike poles facing each other about an inch apart. A wire connected to a source of current is hung loosely between the poles as in Fig. 294. The circuit through the wire should contain a key or switch. If a current is sent through the electromagnets and then another is sent through the wire, the Consider the magnetic field about a wire carrying a current (See Fig. 295.) If such a wire is placed in the magnetic field between two opposite poles of an electromagnet (Fig. 296), the wire will be moved either up or down. The reason for this is shown by the diagram in Fig. 297. Here a wire carrying a current and therefore surrounded by a magnetic field passes across another magnetic field. The two fields affect each other causing a crowding of the force lines either above or below the wire. The wire at once tends to move sideways across the field away from the crowded side. In the figure, the wire tends to move downward. In a practical motor, the wires upon the armature are so connected that those upon one side (see Fig. 298), carry currents that pass in, while on the other side they pass out. To represent the direction of the current in the wires, the In Fig. 298 the north pole is at the left and the south pole at the right. The field of the magnets therefore passes from left to right as indicated in the figure. Now in the armature the currents in the wires on the left half of the armature are coming toward the observer while those on the right move away. Applying the right-hand rule, the magnetic lines will crowd under the wires on the left side of the armature while they will crowd over the wires on the right side. This will cause a rotation up on the left side and down on the right, or in a clockwise direction. If the current in the armature is reversed (in on the left and out on the right), the lines of force will crowd the armature around in the opposite direction or counter clockwise. The rotation of the The motorman of a street car reverses the motion of his car by reversing the direction of the current in the armature of the motor. 306. Practical motors have many coils upon the armature with a corresponding number of segments upon the commutator. A large number of coils and commutator segments enables some one of the coils to exert its greatest efficiency at each instant, hence a steady force is provided for turning the armature which causes it to run smoothly. Important Topics1. The dynamo, four essential parts, action (a) for alternating currents, (b) for direct currents. 2. The electric motor: (a) essential parts, (b) action. Exercises1. Why is an alternating current produced in the armature of a dynamo? 2. How is this current produced? Give careful explanations. 3. What is the result of Lenz's law as applied to the dynamo? 4. Apply the first two laws of electromagnetic induction to the dynamo. 5. What is the power of a dynamo if it produces 40 amperes of current at 110 volts? 6. How much power must be applied to this dynamo if its efficiency is 90 per cent.? 7. A motor takes 10 amperes of current at 220 volts; what is the power of the current in watts? If this motor has an efficiency of 95 per cent., how many horse-power of mechanical energy can it develop? 8. Explain why reversing the current in the armature of a motor reverses the direction of rotation. 9. Find the cost of running a washing machine using a 1/2-horsepower motor 2 hours if the cost of the electricity is 10 cents a kilowatt hour. 10. A 1/8-horse-power motor is used to run a sewing machine. If used for 3 hours what will be the cost at 11 cents a kilowatt hour? (3) The Induction Coil and the Transformer307. The Induction Coil.—Practically all electric currents are produced either by voltaic cells or by dynamos. It is frequently found, however, that it is desirable to The current from the battery flows through the primary coil magnetizing the iron core. The magnetism in the core attracts the soft-iron end of the interrupter, drawing the latter over and breaking the circuit at the screw contact, K. This abruptly stops the current and at once the core loses its magnetism. The spring support of the interrupter now draws the latter back to the contact, T, again completing the circuit. The whole operation is repeated, the interrupter vibrating rapidly continually opening and closing the circuit. 308. The Production of Induced Currents in the Secondary Coil.—When the current flows through the 309. The Transformer.—This is like the induction coil in that it uses a primary and a secondary coil, and an iron core to carry the magnetic field. (See Fig. 304.) They differ in that the transformer has a closed core or one forming a continuous iron circuit, while the induction coil has an open core, or one in which the magnetic field must travel in air from the north to the south poles of the core. The 310. Uses of Transformers.—In electric lighting systems, dynamos often produce alternating currents at 1000 to 12,000 volts pressure. It is very dangerous to admit currents at this pressure into dwellings and business houses, so that transformers are installed just outside of buildings to "step-down" the high voltage currents to 110 or 220 volts. The lighting current that enters a house does not come directly from a dynamo. It is an induced current produced by a transformer placed near the house. (See Fig. 307.) In a perfect transformer the efficiency would be 100 per cent. This signifies that the energy that is sent into the primary coil of the transformer exactly equals the energy in the secondary coil. The best transformers actually show efficiencies better than 97 per cent. The lost energy appears as heat in the transformer. "The transfer of great power in a large transformer from one circuit to another circuit entirely separate and distinct, without any motion or noise and almost without loss, is one of the most wonderful phenomena under the control of man." 311. The mercury arc rectifier is a device for changing an alternating current into a direct current. It is frequently used for charging storage batteries where only alternating current is supplied by the electric power company. Important TopicsTransformer, induction coil, mercury arc rectifier, construction, action; uses of each. Exercises1. Does the spark of an induction coil occur at "make" or at "break?" Why? 2. What must be the relative number of turns upon the primary and secondary coils of a transformer if it receives current at 3. Would the transformer work upon a direct current? Why? 4. Explain why the interrupter is a necessary part of the induction coil and not of the transformer. 5. If a building used eighty 110-volt incandescent lamps, what would be necessary to light them if they were joined in series? Why would this not be practical? 6. If a 16-candle-power lamp requires 0.5 ampere upon a 110-volt circuit what current and voltage will be needed to operate 12 such lamps in parallel? 7. What will it cost to run these lamps 4 hours a night for 30 days at 10 cents per kilowatt hour? 8. If a mercury arc rectifier uses 5 amperes of current at 110 volts alternating current to produce 5 amperes of direct current at 70 volts, what is the efficiency of the rectifier? 9. Compute the heat produced in a 40 watt tungsten lamp in 1 minute. 10. Compute the heat produced in a 60 watt carbon incandescent lamp in 1 hour. (4) The Telephone312. The Electric Telephone.—This is an instrument for reproducing the human voice at a distance by an electric current. The modern electric telephone consists of at least four distinct parts (see Fig. 312); viz., a transmitter, an induction coil, an electric battery, and a receiver. The first three of these are concerned in sending, or transmitting over the connecting wires a fluctuating electric current, which has been modified by the waves of a human voice. The receiver, is affected by the fluctuating current and reproduces the voice. It will be considered first, in our study. 313. The telephone receiver was invented in 1876 by Alexander Graham Bell. It consists of a permanent steel magnet, U shaped, with a coil of fine insulated copper wire about each pole. (See Fig. 310.) A disc of thin sheet iron is supported so that its center does not quite touch the The action of the receiver may be understood from the following explanation: The electric current sent to the receiver, comes from the secondary coil of the induction coil; it is an alternating current, fluctuating back and forth just in time with the waves of the voice affecting it at the transmitter. This alternating current flows around the coils on the poles of the permanent magnet. When this current flows in one direction, its magnetic field assists the field of the permanent magnet, strengthening it. This stronger magnetic field draws the thin iron disc in front of the poles of the magnet a little closer to them. When the current in the coils flows the other way, its magnetic field weakens the field of the steel magnet, and the disc is drawn back by the force of its own elasticity. Thus the disc of the receiver vibrates with the alternations of the current, and reproduces the same sounds that were spoken into the transmitter. 314. The Telephone Transmitter.—The telephone receiver just described has great sensitiveness in reproducing sound, but it is not satisfactory as a transmitter or sending apparatus. The transmitter commonly used is represented in cross-section in Fig. 311. In this figure, back of the mouthpiece, is a thin carbon disc, D. Back of this 315. The action of the transmitter is explained as follows: When the sound waves of the voice strike upon the carbon disc, the latter vibrates, alternately increasing and decreasing the pressure upon the granular carbon. When the pressure increases, the electrical resistance of the granular carbon is lessened, and when the pressure upon it is decreased, its resistance increases. This changing resistance causes fluctuations in the electric current that correspond exactly with the sound waves of the voice affecting it. 316. A complete telephone system operating with a local battery is shown in Fig. 312. A person speaking into the transmitter causes a fluctuation in the electric current in the transmitter as described in Art. 315. This fluctuating current passes through the primary coil of the induction coil Ic. This fluctuating current produces a fluctuating magnetic field in its core. This fluctuating field induces an alternating current in the secondary coil which alternates just as the primary current fluctuates, In cities and towns, the telephone system in use differs from the one described in usually having one large battery placed in the central exchange, instead of dry cells at each instrument. (See Fig. 313.) Also the operator at central is called by simply taking the receiver from the hook instead of being "rung up" by the subscriber. The operations of the transmitter, induction coil and receiver, however, are the same in all telephones. Important Topics1. Receiver: parts, action. 2. Transmitter: parts, action. 3. Induction coil, bell, line wires, etc. 4. Action of the whole device. Exercises1. State three important electrical laws or principles that are employed in the operation of the telephone. What is the application of each? 2. Connect the binding posts of a telephone receiver with a sensitive galvanometer and press on the diaphragm of the receiver; a deflection of the galvanometer will be noticed. Release the diaphragm and a reflection in the opposite direction is seen. Explain. 3. Is the current passing through the transmitter the one going to the receiver of the instrument? Explain. 4. Does the receiver at the telephone used by a person repeat the speech of the person? Explain. 5. How many 0.5 ampere lamps can be used with a 6 ampere fuse? 6. Why is it necessary to have a rheostat connected in series with a stereopticon or moving picture machine while a rheostat is not used with arc lights out doors? 7. How many candle power should a 60 watt carbon incandescent lamp give, if its efficiency is 3.4 watts per candle power? 8. Three incandescent lamps having resistances of 100, 150, and 240 ohms, respectively, are connected in parallel. What is their combined resistance? Review Outline: Induced CurrentsInduced currents; 3 laws, illustrations. Construction, action, and uses of—magneto, dynamo, induction coil, transformer, motor, telephone. Mercury arc rectifier. Terms—primary, secondary, for coils and currents, armature, commutator, slip ring, brush, rectifier, open core, series, shunt, and compound connections for dynamos. |