FOOD MATERIALS AND FOODSTUFFS Food problems.—“What shall I plan for the three meals?” is a question as new each day as the day itself. That many women ask it, and are glad for an answer or a suggestion is proved by a glance at the daily or weekly paper or woman’s magazine, whose publishers know that it pays to print menus innumerable. Indeed, the daily press is full of signs that the food problem is an acute one, for the current joke about food prices, the accounts of boycotts by housekeepers, popular articles on nutrition and pure foods, and the records of state and national legislation, all show that as a nation we are awake and seeking a way out of our present difficulties. Doubtless, the housekeeper has always found the task of supplying food to her family one of the most perplexing, but modern conditions have made the difficulties manifold when contrasted with olden times. A pretty picture of household management in seventeenth century England is drawn by Sir Walter Scott in “Peveril of the Peak.” The lord of the castle has invited the village people to a great feast in celebration of the restoration of Charles the Second, and Lady Peveril finds her larder rather low. To be sure, there are Now every large city, and even the small town, is the market of the world. We have long been accustomed to the importation of oranges and lemons, and dried fruits from distant lands; but now we have peaches and pears from South Africa, melons from Spain, pineapples from the Azores, hothouse grapes from England, and apples from Australia, and in 1913, we read of the shipment of beef from Argentina. In our own country, early fruits and vegetables travel from the south to the north, so that the season of some foods is long extended. The large amount of canned food also does away with the natural limits of the season, and this is further affected by cold storage. Both the quality and the cost of food are modified by these new methods of commerce, and furthermore, modern methods of manufacture have changed the quality. In an ideal community these changes would be for the better, but manufacturers often think more of their own profit than of the quality of their goods, and as a result adulterations have crept in, making necessary the enactment and enforcement of pure food laws. This is by Instinct guides somewhat in the selection of food where conditions of living are simple. Under more complex conditions there must be a scientific study of the whole situation in order that the individual may cope with it. Then, too, with such a variety of foods from which to select, it is easy to be tempted beyond our means, and to disregard the simple and the wholesome. We know that it is easy to develop a taste for some one food in excess, as for instance, sweets or dishes rich in fat and too highly flavored, and the physician adds his word here to the plea for a study of food and its functions. The conclusion is this, that the housekeeper who has the welfare of her family at heart will not confine her interest in food to cooking processes and new recipes. Good cooks we must have, and our standard of cooking could easily be raised. But other facts about food are important to-day, and as we learn to prepare and serve food daintily, we must study such topics as the following: What food is, its composition and how it nourishes us; how it is manufactured and transported; “pure food”; sanitary and convenient markets; the cost of food and how to buy; principles of food preparation; suitable combinations and amounts of food. These topics are all treated in this volume, and should be considered as important as the actual preparation of food. Food Materials What is food?—This would seem to be a difficult question to answer as we look about a modern grocery or market with its bewildering assortment of foods. It seems hardly possible to describe such a variety of articles in a brief sentence, A widely used government bulletin gives this definition: “Food is that which taken into the body builds tissue or yields energy or does both.” Probably we have learned this in our physiology, and admit it to be true, but for practical purposes, we need a more complete statement than this. Let us carefully determine what our foods really are, and what elements they contain, in order that we may select wisely for purposes of nutrition, and also that we may learn how to prepare food materials in a way that will utilize everything in them and waste nothing. Vegetable and animal foods.—It is easy to divide food materials in a general way into those derived from the vegetable kingdom and those derived from the animal kingdom. In the vegetable group we have first, the different parts of many plants, and second, substances manufactured from plants. While we do not usually eat the whole of any one plant, yet there is not any part of the plant that we have not adopted as food. We use roots and tubers in beets, carrots, and potatoes, and the onion is a bulb. In celery and asparagus we eat the plant stalk. Plant leaves give us lettuce and other salads, cabbage and the like. Peas and beans and nuts are seeds, and cauliflower is a part of the flower. The fruit as a whole is familiar in many forms. Manufactured vegetable food materials include flour, meals, breakfast cereals, starch, sugar, molasses and sirups. The animal kingdom gives us the flesh of animals, fish and shell fish, and substances derived from animals, like eggs, milk, and the milk products, cream, butter, and cheese. These materials vary so much in appearance that they would seem to have nothing in common. If, however, we compare the food of different animals and different races of men, we cannot but conclude that this is a mistaken judgment. We find an animal like the lion feeding entirely upon the flesh of other animals, and a strong creature like the ox, eating nothing but grass and grain. We also note that one race of men includes meat in its diet, and another subsists almost entirely upon vegetable food, such as rice and beans. Yet in both cases, these diverse kinds of food accomplish the same end,—body building and the supplying of energy. Let us study two common foods, from the two kingdoms, and see if through this study we can discover in what ways they are alike. Comparison of milk and beans.—A moment’s thought enables us to see that in milk we have a food that must have all the elements needed in nutrition, since it is the only food taken by many young animals. The baby and the young calf find in it everything that is needed to build the growing body, and to give them energy. If you see a young calf frisking about the field, you can appreciate how well his food supplies his needs. A simple experiment will help us to find some of the substances contained in milk. Let the milk stand until the cream rises on the top. Skim the cream, warm it slightly and beat it with an egg beater. Butter will soon “come,” and butter, we know, is a form of fat. Warm a pint of the skimmed milk, add to it a dissolved rennet tablet, and set it in a warm place. In a short time, the milk becomes solidified to a consistency like that of jelly. If allowed to stand longer, a watery liquid will separate itself from the solid portion. These are the “curds and whey” that result, also, from the souring of milk. The whey can be squeezed out of the
Courtesy of President Gulliver, Rockford College. You may then surmise from the sweet taste of milk that sugar is present; the chemist knows how to obtain it in pure form as “sugar of milk.” The chemist also finds certain mineral substances which remain behind when all the water is evaporated and the curds and sugar burned away. These mineral substances are spoken of by the chemist as “ash,” because this is what remains after burning the other portions of a food material, as ashes remain from a wood fire. Figure 1 shows you these substances in the amounts in which each occurs in a pint of milk. The sugar is one of a class of substances to which the chemist gives the name carbohydrate. To the substance in the curd that is different from all the other substances in the milk the name “protein” is given. We will now turn to the composition of beans, for in beans we find food stored up to nourish the young plant, which we, Composition of Milk and Beans
Notice that the substances in the beans are the same in general nature as those in the milk, although the amounts are different. The water that the young plant needs is, of course, supplied from the earth. There is another difference to note although this is not shown in the table; in the beans the carbohydrate is of two kinds, sugar and starch. All the varieties of food with which we are supplied will be found to contain some of these substances: protein, fat, carbohydrate, mineral matter, water; and to these we give the name foodstuffs. Some food materials (like the milk and beans just studied) contain all the foodstuffs, some only one, as in the case of sugar. We can now define food as something that contains one or more of the substances known as foodstuffs. But what are the foodstuffs themselves? Elements in the foodstuffs.—Although we are not chemists, and may not even have taken a course in chemistry, Proteins, fats, and carbohydrates all contain large amounts of carbon, and on this account are called fuel foods. But proteins are distinguished because they contain nitrogen in addition, which is found in no other foodstuff. Sulphur, too, we get only from protein, but we need less of it than of nitrogen, so we think about the nitrogen and let the sulphur take care of itself. The nitrogen that we draw in from the air with every breath, we breathe out again without being able to use it. This element is necessary to every living cell, but we can make it ours only through our protein food. Nitrogen is cheapest when obtained from the grains, from dried beans and peas. We pay a higher price for it in milk, eggs, fish, meat, and nuts. Carbon, which is found in all foodstuffs except water and some kinds of mineral matter, costs much less, especially when we take it in the form of carbohydrates such as starches and sugars. Oxygen is also abundant in our foods, but we get it even more cheaply in water and by breathing it in from the air. Phosphorus, iron, and calcium are very important elements, but we do not need them in very large quantities. We can get them cheaply in whole grains, peas and beans, some fruits and Functions of the Foodstuffs Food for energy.—The first requirement of the body is for fuel, because it has a great deal of work to do. Even when one lies perfectly quiet and appears to be resting, the heart is working to keep up the circulation of the blood, the chest and diaphragm muscles are working to maintain the oxygen supply to the lungs, the alimentary tract is moving food material along, working to digest it and get rid of waste, and the skeletal muscles are being held up to “tone” so as to be ready for further action. All this work that we scarcely realize, may be called involuntary. To it we may add all sorts of voluntary movements, from simply speaking a word to turning somersaults or lifting heavy weights. All work involves energy, which we can obtain only from the fuel foods, proteins, fats, and carbohydrates. Energy takes different forms. Our supply comes from the sun in the forms of heat and light, and plants store it up in the form of chemical energy when they build carbohydrates, fats, and proteins. This may be changed into the forms of work or of heat when we eat the food. Whenever an attempt is made to change chemical energy to work, some of it will The unit of fuel value.—In our studies of food materials, we must find out just how much energy, or working power, can be obtained from each kind. We must have a measure of energy or fuel value; and just as the inch is a measure of length, and the pound of weight, so the Calorie serves as a measure of fuel value. This unit
The standard portion.—Knowing the composition of any food material, it is possible from these figures to calculate Food for body building.—Every living cell has a little life history of its own, and constantly demands a certain amount of new material to replace old which it has worn out. Besides this, old cells die, and new ones have to be made to replace them. Hence even a full-grown person needs building material, and much more is required in proportion when the person is growing and perhaps adding several ounces a week to his weight. The foodstuffs which have especial value as building material are protein and mineral matter. Food for body regulating.—To help in the digestion of food, to keep the blood in proper condition, the muscles supple, and all the processes of the body at their best, ash constituents and water in the diet are necessary. A tabular summary of the functions of the foodstuffs and an outline of the changes which take place in digestion will be found in the appendix. We are now able to give a more complete answer to our question, “What is Food?” Food has been said to be that which taken into the body builds tissue or yields energy, or both. The food as a whole must contain all the chemical elements needed by the body, these elements being supplied in substances known as foodstuffs, viz., protein, fat, carbohydrates, mineral matter or ash, water. To be a food, a substance must contain one or all of the foodstuffs. It must be noted here that our food materials as bought, Food adjuncts.—In preparing foods for the table, we have the habit of adding substances to develop or give flavor. With the exception of sugar, which we use largely for its agreeable taste, these substances have no nutritive value. They are not hurtful unless used in excess, although pepper and other spices sometimes disturb digestion. Pepper, too, irritates a delicate throat. Only a few flavors are really detected by the sense of taste. These are salt, sugar, acids, and bitter flavors; and something in the spices that gives a sensation hard to describe, but is unmistakable in an overdose of mustard or horse-radish. “Pungent” describes such a flavor. The other flavors are really odors, and are detected by the sense of smell. Have you not at some time seemed to lose the sense of taste when suffering from a severe cold in the head? Yet even then you could taste sugar, salt, vinegar, and feel the pungency of pepper. These other flavors or odors are due to a volatile oil in the flavoring material, that is, an oil that readily evaporates, especially when heated, as distinguished from the non-volatile oils and fats like olive oil and butter. This is a practical bit of knowledge in our cookery, for whatever passes off as fragrance during the cooking process, is lost as flavor. For instance, to cook vanilla essence in a soft custard is equivalent to throwing most of it away. Salt.—A mineral substance that develops other flavors. It should not be used in excess. A small amount is desirable even in sweet dishes. Acids.—Vinegar, lemon juice, and juices of other sour fruits. These are pleasing in themselves, and in small quantities develop other flavors and give a certain brightness of taste. They are used with meat and fish, and in sweet dishes. Spices.—Red, black, and white pepper, cinnamon, cloves, allspice, nutmeg, mace, and ginger are examples. They are made from the seeds of certain plants, used whole or ground. Stick cinnamon is a layer of a stem. Ginger is a root. Herbs.—Thyme, mint, sweet marjoram, summer savory are the leaves of old-fashioned pot herbs, used either fresh or dried. There were many others used in olden days that are not common now, such as sweet basil and pot marigold. A quite complete list will be found nowadays in any good seed catalogue. These herbs are used with meat dishes. Vegetable flavors.—Celery seeds and stalks, onions, leek and garlick, carrots and turnips, all contain flavoring oils, and we use them for their flavors in small portions, in meat dishes. Essences.—The oils of vanilla, bitter almonds, lemon and orange peel are dissolved in alcohol, and used in liquid form in cakes and desserts. Violet leaves and violet essence are sometimes used, but are a fad as a flavor. Rose water made from rose leaves is an old-fashioned flavoring, used infrequently now in blancmanges. The fresh leaf of a rose geranium gives a pleasing flavor, for occasional use. Chocolate, coffee, and tea are used for flavorings as well as for beverages. Coloring substances.—These come of many colors made from aniline dyes, and while probably not often hurtful, they should be used only in sweets and candies, and very seldom, if ever. It is better to depend on natural fruit coloring when color is wanted. The fine art of cooking is to develop the natural flavor of each foodstuff by the proper application of heat, and never to use these condiments and flavorings in excess. The artist in cookery has a gift for flavoring, somewhat as the painter has for color. Beverages.—The dictionary defines “beverage” as “drink of any kind.” The word is used in different forms in several languages and is traced back to the Latin bibere, EXERCISES1. State the important topics in the study of foods. 2. Explain the difference between a “food material” and a “foodstuff.” 3. What are the important elements in protein, fat, and carbohydrates? 4. What food materials are rich in protein? In fat? In carbohydrate? In mineral matter? 5. Explain the meaning and use of the “Calorie.” 6. State the functions of food. 7. What is a food adjunct? 8. What is the waste material in food? |