Unfortunately no complete or satisfactory account can be given of the geographical distribution of fungi. The younger Fries, It will be seen from the above summary how unsatisfactory it must be to give anything like a general view of the geographical distribution of fungi, or to estimate at all approximately the number of species on the globe. Any attempt, therefore, must be made and accepted subject to the limitations we have expressed. The conditions which determine the distribution of fungi are not precisely those which determine the distribution of the higher plants. In the case of the parasitic species they may be said to follow the distribution of their foster-plants, as in the case of the rust, smut, and mildew of the cultivated cereals, The fleshy fungi, Agaricini and Boleti especially, are largely dependent upon the character of woods and forests. When the undergrowth of a wood is cleared away, as it often is every few years, it is easy to observe a considerable difference in the fungi. Species seem to change places, common ones amongst a dense undergrowth are rare or disappear with the copsewood, and others not observed before take their place. Some species, too, are peculiar to certain woods, such as beech woods and fir woods, and their distribution will consequently depend very much on the presence or absence of such woods. Epiphytal species, such as Agaricus ulmarius, Agaricus mucidus, and a host of others, depend on circumstances which do not influence the distribution of flowering plants. It may be assumed that such species as flourish in pastures and open places are subject to fewer adverse conditions than those which affect woods and forests. Any one who has observed any locality with reference to its Mycologic Flora over a period of years will have been struck with the difference in number and variety caused by what may be termed a “favourable season,” that is, plenty of moisture in August with warm weather afterwards. Although we know but little of the conditions of germination in Agarics, it is but reasonable to suppose that a succession of dry seasons will considerably influence the flora of any locality. Heat and humidity, therefore, are intimately concerned in the mycologic vegetation of a country. Fries has noted in his essay the features to which we have alluded. “The fact,” he says, “must not be lost sight of that some species of fungi which have formerly been common in certain localities may become, within our lifetime, more and more scarce, and even altogether cease to grow there. The cause of this, doubtless, is the occurrence of some change in the physical constitution of a locality, such as that resulting from the destruction of a forest, or from the drainage, by ditches and Although heat and humidity influence all kinds of vegetation, yet heat seems to exert a less, and humidity a greater, influence on fungi than on other plants. It is chiefly during the cool moist autumnal weather that the fleshy fungi flourish most vigorously in our own country, and we observe their number to increase with the humidity of the season. Rain falls copiously in the United States, and this is one of the most fruitful countries known for the fleshy fungi. Hence it is a reasonable deduction that moisture is a condition favourable to the development of these plants. The Myxogastres, according to Dr. Henry Carter, are exceedingly abundant—in individuals, at least, if not in species—in Bombay, and this would lead to the conclusion that the members of this group are influenced as much by heat as humidity in their development, borne out by the more plentiful appearance of the species in this country in the warmer weather of summer. In the essay to which we have alluded, Fries only attempts the recognition of two zones in his estimate of the distribution of fungi, and these are the temperate and tropical. The frigid zone produces no peculiar types, and is poor in the number of species, whilst no essential distinction can be drawn between the tropical and sub-tropical with our present limited information. Even these two zones must not be accepted too rigidly, since tropical forms will in some instances, and under favourable conditions, extend far upwards into the temperate zone. “In any region whatever,” writes Fries, “it is necessary, in the first instance, to draw a distinction between its open naked plains and its wooded tracts. In the level open country there is a more rapid evaporation of the moisture by the conjoined action of the sun and wind; whence it happens that such a region is more bare of fungi than one that is mountainous or covered by woods. On the other hand, plains possess several species peculiar to themselves; as, for example, Agaricus pediades, certain Tricholomata, and, above all, the family Coprini, of which they may be regarded as the special habitat. The species of this family augment in number, in any given country, in proportion to the extent and degree of its cultivation; for instance, they grow more luxuriantly in the province of Scania, in Sweden—a district farther distinguished above all others by its cultivation and fertility. In well-wooded countries moisture is retained a much longer time, and, as a result, the production of fungi is incomparably greater; and it is here desirable to make a distinction between the fungi growing in forests of resinous-wooded trees (ConiferÆ) and those which inhabit woods of other trees, for these two descriptions of forests may be rightly regarded, as to their fungaceous growths, as two different regions. Beneath the shade of ConiferÆ, fungi are earlier in their appearance; so much so, that it often happens they have attained their full development when their congeners in forests of non-resinous trees have scarcely commenced their growth. In woods of the latter sort, the fallen leaves, collected in thick layers, act as an obstacle to the soaking of moisture into the earth, and thereby retard the vegetation of fungi; on the other hand, such woods retain moisture longer. These conditions afford to several large and remarkable species the necessary time for development. The beech is characteristic of our own region, but, further north this tree gives place to the birch. Coniferous woods are, moreover, divisible into two regions—that of the pines and that of the firs. The latter is richer in species than the former, because, as is well known, fir-trees flourish in more fertile and moister soils. Whether, with respect to the South of Europe, other subdivisions into regions are required, we know not; still less are In very cold countries the higher fungi are rare, whilst in tropical countries they are most common at elevations which secure a temperate climate. In Java, Junghuhn found them most prolific at an elevation of 3,000 to 5,000 feet; and in India, Dr. Hooker remarked that they were most abundant at an elevation of 7,000 to 8,000 feet above the sea level. For the higher fungi we must be indebted to the summary made by Fries, to which we have little to add. The genus Agaricus occupies the first place, and surpasses, in the number of species, all the other generic groups known. It appears, from our present knowledge, that the Agarici have their geographic centre in the temperate zone, and especially in the colder portion of that zone. It is a curious circumstance that all the extra-European species of this genus Agaricus may be referred to various European subgenera. In tropical countries it appears that the Agarici occupy only a secondary position in relation to other genera of fungi, such as Polyporus, Lenzites, etc. North America, on the other hand, is richer in species of Agaricus than Europe; for whilst the majority of typical forms are common to both continents, America further possesses many species peculiar to itself. In the temperate zone, so close is the analogy prevailing between the various countries in respect to the Agaricini, that from Sweden to Italy, and as well in England as North America, the same species are to be found. Of 500 Agaricini met with in St. Petersburg, there are only two or three which have not been discovered in Sweden; and again, of fifty species known in Greenland, there is not one that is not common in Sweden. The same remarks hold good in reference to the Agaricini of Siberia, Kamtschatka, the Ukraine, etc. The countries bordering upon the Mediterranean possess, however, several peculiar types; and Eastern and Western Europe present certain dissimilarities in their Agaric inhabitants. Several species, for example, of Armillaria The species of Coprinus appear to find suitable habitats in every quarter of the globe. The CortinariÆ predominate in the north; they abound in Northern latitudes, especially on wooded hills; but the plains offer also some peculiar species which flourish during the rainy days of August and September. In less cold countries they are more scarce or entirely absent. The species of the genus Hygrophorus would at first seem to have a similar geographical distribution to those of the last group; but this is really not the case, for the same Hygrophori are to be found in nearly every country of Europe, and even the hottest countries (and those under the equator) are not destitute of representatives of this wide-spread genus. The Lactarii, which are so abundant in the forests of Europe and North America, appear to grow more and more scarce towards both the south and north. The same may be stated in regard to Russula. The genus Marasmius is dispersed throughout the globe, and everywhere presents numerous species. In inter-tropical countries they are still more abundant, and exhibit peculiarities in growth which probably might justify their collection into a distinct group. The genera Lentinus and Lenzites are found in every region of the world; their principal centre, however, is in hot countries, where they attain a splendid development. On the contrary, towards the north they rapidly decrease in number. The Polypori constitute a group which, unlike that of the Agarics, especially belongs to hot countries. The Boleti constitute the only exception to this rule, since they select the When the majority of the species of a genus are of a fleshy consistence, it may generally be concluded that that genus belongs to a Northern region, even if it should have some representatives in lands which enjoy more sunshine. Thus the Hydna are the principal ornaments of Northern forests, where they attain so luxuriant a growth and beauty that every other country must yield the palm to Sweden in respect to them. In an allied genus, that of Irpex, the texture assumes a coriaceous consistence, and we find its species to be more especially inhabitants of warm climates. Most of the genera of Auricularini are cosmopolitan, and the same is true of some species of Stereum, of Corticium, etc., which are met with in countries of the most different geographical position. In tropical countries, these genera of fungi assume the most curious and luxuriant forms. The single and not considerable genus Cyphella appears to be pretty uniformly distributed over the globe. The ClavariÆi are equally universal in their diffusion, although more plentiful in the north; however, the genus Pterula possesses several exotic forms, though in Europe it has but two representative species. That beautiful genus of The fungi which constitute the family of Tremellini prevail in Europe, Asia, and North America, and exhibit no marked differences amongst themselves, notwithstanding the distances of the several countries apart. It must, however, be stated that the HirneolÆ for the most part inhabit the tropics. We come now to the Gasteromycetes—an interesting family, which exhibits several ramifications or particular series of developments. The most perfect Gasteromycetes almost exclusively belong to the warmer division of the temperate, and to the tropical zone, where their vegetation is the most luxuriant. Of late the catalogue of these fungi has been greatly enriched by the addition of numerous genera and species, proper to hot countries, previously unknown. Not uncommonly, the exotic floras differ from ours, not merely in respect of the species, but also of the genera of Gasteromycetes. It must, besides, be observed that this family is rich in well-defined genera, though very poor in distinct specific forms. Among the genera found in Europe, many are cosmopolitan. The Phalloidei present themselves in the torrid zone under the most varied form and colouring, and comprise many genera rich in species. In Europe their number is very restricted. As we advance northward they decrease rapidly, so that the central districts of Sweden possess only a single species, the Phallus impudicus, and even this solitary representative of the family is very scarce. In Scania, the most southern province of Sweden, there is likewise but one genus and one species belonging to it, viz., the Mutinus caninus. Among other members of the Phalloidei, may be further mentioned the Lysurus of China, the AserÖe of Van Diemen’s Land, and the Clathrus, one species of which, C. cancellatus, has a very wide geographical range; for instance, it is found in the south of Europe, in Germany, and in America; it occurs also in the south of England and the Isle of Wight; whereas the other species of this genus have a very limited distribution. The Tuberacei The Nidulariacei and the Trichodermacei appear to be scattered over the globe in a uniform manner, although their species are not everywhere similar. The same statement applies to the Myxogastres, which are common in Lapland, and appear to have their central point of distribution in the countries within the temperate zone. At the same time, they are not wanting in tropical regions, notwithstanding that the intensity of heat, by drying up the mucilage which serves as the medium for the development of their spores, is opposed to their development. Of the Coniomycetes, the parasitic species, as the CÆomacei, the Pucciniei, and the Ustilagines, accompany their foster-plants into almost all regions where they are found; so that smut, rust, and mildew are as common on wheat and barley in the Himalayas and in New Zealand as in Europe and America. Ravenelia and Cronartium only occur in the warmer parts of the temperate zone, whilst Sartvellia is confined to Surinam. Species of Podisoma and Roestelia are as common in the United States as in Europe, and the latter appears also at the Cape and Ceylon. Wherever species of SphÆria occur there the SphÆronemei are found, but they do not appear, according to our present knowledge, to be so plentiful in tropical as in temperate countries. The Torulacei and its allies are widely diffused, and probably occur to a considerable extent in tropical countries. Hyphomycetes are widely diffused; some species are peculiarly The Physomycetes have representatives in the tropics, species of Mucor occurring in Cuba, Brazil, and the southern states of North America, with the same and allied genera in Ceylon. Antennaria and Pisomyxa seem to reach their highest development in hot countries. The Ascomycetes are represented everywhere, and although certain groups are more tropical than others, they are represented in all collections. The fleshy forms are most prolific in temperate countries, and only a few species of Peziza affect the tropics, yet in elevated districts of hot countries, such as the Himalayas of India, Peziza, Morchella, and Geoglossum are found. Two or three species of Morchella are found in Kashmir, and at least one or two in Java, where they are used as food. The genus Cyttaria is confined to the southern parts of South America and Tasmania. The United States equal if they do not exceed The imperfect condition of our information concerning very many countries, even of those partially explored, must render any estimate or comparison of the floras of those countries most fragmentary and imperfect. Recently, the mycology of our own islands has been more closely investigated, and the result of many years’ application on the part of a few individuals has The flora of Belgium has its most recent exponent in the posthumous work of Jean Kickx; but the 1,370 species enumerated by him can hardly be supposed to represent the whole of the fungi of Belgium, for in such case it would be less than half the number found in the British Islands, although the majority of genera and species are the same. For the North of France no one could have furnished a more complete list, especially of the microscopic forms, than M. DesmaziÈres, but we are left to rely solely upon his papers in “Annales des Sc. Nat.” and his published specimens, which, though by no means representative of the fleshy fungi, are doubtless tolerably exhaustive of the minute species. From what we know of French Hymenomycetes, their number and variety appear to be much below those of Great Britain. The mycologic flora of Switzerland has been very well investigated, In Spain and Portugal scarce anything has been done; the small collection made by Welwitsch can in no way be supposed to represent the Peninsula. The fungi of Italy Bavaria and Austria (including Hungary, and the Tyrol) are being more thoroughly investigated than hitherto, but the works of SchÆffer, Tratinnick, Corda, and Krombholz have made us acquainted with the general features of their mycology, Russia is to a large extent unknown, except in its northern borders. We have only to add, for Europe, that different portions of the German empire have been well worked, from the period of Wallroth to the present. If we pass from Europe to North America, we find there a mycologic flora greatly resembling that of Europe, and although Canada and the extreme North is little known, some parts of the United States have been investigated. Schweinitz The islands of the West Indies have been more or less examined, but none so thoroughly as Cuba, at first by Ramon de la Sagra, and afterwards by Wright. In Central America only a few small collections have been made, which indicate a sub-tropical region. From the northern parts of South America, M. Leprieur collected in French Guiana. The island of Juan Fernandez furnished to M. Bertero a good representative collection, Australasia has been partly explored, and the results embodied in the Floras of Dr. Hooker and subsequent communications. In a note to an enumeration of 235 species in 1872, the writer observes that “many of them are either identical with European species, or so nearly allied that with dried specimens only, unaccompanied by notes or drawings, it is impossible to separate them; others are species which are almost universally found in tropical or sub-tropical countries, while a few only are peculiar to Australia, or are undescribed species, mostly of a tropical type. The collections on the whole can scarcely be said to be of any great interest, except so far as geographical distribution is concerned, as the aberrant forms are few.” The fungi collected by the Antarctic Expedition in Auckland and Campbell’s Islands, and in Fuegia and the Falklands, In New Zealand a large proportion have been found, and these may be taken to represent the general character of the fungi of the islands, which is of the type usually found in temperate regions. The fungi of Asia are so little known that no satisfactory conclusions can be drawn from our present incomplete knowledge. In India, the collections made by Dr. Hooker in his progress to the Sikkim Himalayas, Of the Indian Archipelago, Java has been most explored, both by Junghuhn The fungi of the island of Ceylon, collected by Gardner, Thwaites, and KÖnig, were numerous. The Agarics comprise 302 species, closely resembling those of our own country. In Africa, the best explored country is Algeria, although unfortunately the flora was never completed. From the Cape of Good Hope and Natal collections have been made by Zeyher, At the most, only scattered and isolated specimens have been From this imperfect summary it will be seen that no general scheme of geographical distribution of fungi can as yet be attempted, and the most we can hope to do is to compare collection with collection, and what we know of one country with what we know of another, and note differences and agreements, so as to estimate the probable character of the fungi of other countries of which we are still in ignorance. It is well sometimes that we should attempt a task like the present, since we then learn how much there is to be known, and how much good work lies waiting to be done by the capable and willing hands that may hereafter undertake it. Berkeley and Broome, “Enumeration of the Fungi of Ceylon,” in “Journ. Linn. Soc.” xiv. Nos. 73, 74, 1873. Fries, “On the Geographical Distribution of Fungi,” in “Ann. and Mag. Nat. Hist.” ser. iii. vol. ix. p. 279. Fries, “On the Geographical Distribution of Fungi” in “Ann. and Mag. Nat. Hist.” ser. 3, vol. ix. p. 285. Fries, “Summa Vegetabilium ScandinaviÆ” (1846), and “Monographia Hymenomycetum SueciÆ” (1863); “Epicrisis Hymenomycetum Europ.” (1874). “AinÉ Plantes Cryptogames-cellulaires du DÉpartment de Saone et Loire” (1863); Bulliard, “Hist. des Champignons de la France” (1791); De Candolle, “Flore FranÇaise” (1815); Duby, “Botanicon Gallicum” (1828–1830); Paulet, “Iconographie des Champignons” (1855); Godron, “Catalogue des Plantes Cellulaires du DÉpartment de la Meurthe” (1845); Crouan, “Florule du FinistËre” (1867); De Seynes, “Essai d’une Flore Mycologique de la RÉgion de Montpellier et du Gard” (1863). Passerini, “Funghi Parmensi,” in “Giorn. Bot. Italiano” (1872–73); Venturi, “Miceti dell’ Agro Bresciano” (1845); Viviani, “Funghi d’Italia” (1834); Vittadini, “Funghi Mangerecci d’Italia” (1835). SchÆffer, “Fungorum qui in Bavaria,” &c. (1762–1774); Tratinnick, “Fungi Austriaci” (1804–1806 and 1809–30); Corda, “Icones Fungorum” (Prague, 1837–1842); Krombholz, “Abbildungen der SchwÄmme” (1831–1849). Reichardt, “Flora von Iglau;” Niessl, “Cryptogamenflora Nieder-Œsterreichs” (1857, 1859); Schulzer, “SchwÄmme Ungarns, Slavoniens,” &c. Weinmann, “Hymeno-et Gasteromycetes,” in “Imp. Ross” (1836); Weinmann, “Enumeratio Stirpium, in Agro Petropolitano” (1837). Karsten, “Fungi in insulis Spetsbergen collectio” (1872); Karsten, “Monographia Pezizarum fennicarum” (1869); Karsten, “SymbolÆ ad Mycologiam fennicam” (1870). Rabenhorst, “Deutschlands Kryptogamen Flora” (1844); Wallroth, “Flora Germanica” (1833); Sturm, “Deutschlands Flora, iii. die Pilze” (1837, &c.). “Flora Danica” (1766–1873); Holmskjold, “Beata ruris otia Fungis Danicis impensa” (1799); Schumacher, “Enumeratio plantarum SellandiÆ” (1801). Schweinitz, “Synopsis Fungorum,” in “America Boreali,” &c. (1834). Lea, “Catalogue of Plants of Cincinnati” (1849); Curtis, “Catalogue of the Plants of North Carolina” (1867); Berkeley, “North American Fungi,” in “Grevillea,” vols. i.-iii.; Peck, in “Reports of New York Museum Nat. Hist.” Berkeley and Curtis, “Fungi Cubensis,” in “Journ. Linn. Soc.” (1868); Ramon de la Sagra, “Hist. Phys. de l’Isle de Cuba, Cryptogames, par Montagne” (1841); Montagne, in “Ann. des Sci. Nat.” February, 1842. |