X. INFLUENCES AND EFFECTS.

Previous

It is no longer doubted that fungi exercise a large and very important influence in the economy of nature. It may be that in some directions these influences are exaggerated; but it is certain that on the whole their influence is far more important for evil and for good than that of any other of the Cryptogamia. In our endeavour to estimate the character and extent of these influences it will prove advantageous to examine them under three sections. 1. Their influence on man. 2. Their influence on lower animals. 3. Their influence on vegetation. Under these sections the chief facts may be grouped, and some approximate idea obtained of the very great importance of this family of inferior plants, and consequently the advisability of pursuing their study more thoroughly and nationally than has hitherto been done.

I. In estimating the influence of fungi upon man, we naturally enough seek in the first instance to know what baneful effects they are capable of producing on food. Although in the case of “poisonous fungi,” popularly understood, fungi may be the passive agents, yet they cannot be ignored in an inquiry of this nature. Writing of the Uses of Fungi, we have already shown that a large number are available for food, and some of these real delicacies; so, on the other hand, it becomes imperative, even with stronger emphasis, to declare that many are poisonous, and some of them virulently so. It is not sufficient to say that they are perfectly harmless until voluntarily introduced into the human system, whilst it is well known that accidents are always possible, and probably would be if every baneful fungus had the word POISON inscribed in capitals on its pileus.

The inquiry is constantly being made as to what plain rules can be given for distinguishing poisonous from edible fungi, and we can answer only that there are none other than those which apply to flowering plants. How can aconite, henbane, oenanthe, stramonium, and such plants, be distinguished from parsley, sorrel, watercress, or spinach? Manifestly not by any general characters, but by specific differences. And so it is with the fungi. We must learn to discriminate Agaricus muscarius from Agaricus rubescens, in the same manner as we would discriminate parsley from Æthusa cynapium. Indeed, fungi have an advantage in this respect, since one or two general cautions can be given, when none such are applicable for higher plants. For instance, it may be said truly that all fungi that exhibit a rapid change to blue when bruised or broken should be avoided; that all Agarics are open to suspicion which possess an acrid taste; that fungi found growing on wood should not be eaten unless the species is well known; that no species of edible fungus has a strong, unpleasant odour, and similar cautions, which, after all, are insufficient. The only safe guide lies in mastering, one by one, the specific distinctions, and increasing the number of one’s own esculents gradually, by dint of knowledge and experience, even as a child learns to distinguish a filbert from an acorn, or with wider experience will thrust in his mouth a leaf of Oxalis and reject that of the white clover.

One of the most deleterious of fungi that we possess is at the same time one of the most beautiful. This is the Agaricus muscarius, or Fly Agaric, which is sometimes used as a fly poison.[A] It has a bright crimson pileus studded with pale whitish (sometimes yellowish) warts, and a stem and gills of ivory whiteness. Many instances have been recorded of poisoning by this fungus, and amongst them some British soldiers abroad, and yet it cannot be doubted that this fungus is eaten in Russia. Two instances have come under our notice of persons with some botanical knowledge, and one a gardener, who had resided in Russia and eaten of this fungus. In one case the Fly Agaric was collected and shown to us, and in the other the figure was indicated, so that we might be under no doubt as to the species. Only one hypothesis can be advanced in explanation. It is known that a large number of fungi are eaten in Russia, and that they enter much into the domestic cookery of the peasantry, but it is also known that they pay considerable attention to the mode of cooking, and add a large amount of salt and vinegar, both of which, with long boiling, must be powerful agents in counteracting the poison (probably somewhat volatile) of such fungi as the Fly Agaric. In this place we may give a recipe published by a French author of a process for rendering poisonous fungi edible. It must be taken on his authority, and not our own, as we have never made the experiment, notwithstanding it seems somewhat feasible:—For each pound of mushrooms, cut into moderately small pieces, take a quart of water acidulated with two or three spoonfuls of vinegar, or two spoonfuls of bay salt. Leave the mushrooms to macerate in the liquid for two hours, then wash them with plenty of water; this done, put them in cold water and make them boil. After a quarter or half hour’s boiling take them off and wash them, then drain, and prepare them either as a special dish, or use them for seasoning in the same manner as other species.[B]

This method is said to have been tried successfully with some of the most dangerous kinds. Of these may be mentioned the emetic mushroom, Russula emetica, with a bright red pileus and white gills, which has a clear, waxy, tempting appearance, but which is so virulent that a small portion is sufficient to produce disagreeable consequences. It would be safer to eschew all fungi with a red or crimson pileus than to run the risk of indulging in this. A white species, which, however, is not very common, with a bulbous base enclosed in a volva, called Agaricus vernus, should also be avoided. The pink spored species should also be regarded with suspicion. Of the Boleti several turn blue when cut or broken, and these again require to be discarded. This is especially the case with Boletus luridus[C] and Boletus Satanas,[D] two species which have the under surface or orifice of the pores of a vermilion or blood-red colour.

Not only are species which are known to be poisonous to be avoided, but discretion should be used in eating recognized good species. Fungi undergo chemical changes so rapidly that even the cultivated mushroom may cause inconvenience if kept so long after being gathered as to undergo chemical change. It is not enough that they should be of a good kind, but also fresh. The employment of plenty of salt in their preparation is calculated very much to neutralize any deleterious property. Salt, pepper, and vinegar are much more freely employed abroad in preparing fungi than with us, and with manifest advantage.

It is undoubtedly true that fungi exert an important influence in skin diseases. This seems to be admitted on all hands by medical men,[E] however much they may differ on the question of the extent to which they are the cause or consequence of disease. Facts generally seem to bear out the opinion that a great number of skin diseases are aggravated, and even produced, by fungi. Robin[F] insists that a peculiar soil is necessary, and Dr. Fox says it is usually taught that tuberculous, scrofulous, and dirty people furnish the best nidus. It is scarcely necessary to enumerate all these diseases, with which medical men are familiar, but simply to indicate a few. There is favus or scall-head, called also “porrigo,” which has its primary seat in the hair follicles. Plica polonica, which is endemic in Russia, is almost cosmopolitan. Then there is Tinea tonsurans, Alopecia, Sycosis, &c., and in India a more deeply-seated disease, the Madura Foot, has been traced to the ravages of a fungus described under the name of Chionyphe Carteri.[G] It is probable that the application of different names to the very often imperfect forms of fungi which are associated with different diseases is not scientifically tenable. Perhaps one or two common moulds, such as Aspergillus or Penicillium, lie at the base of the majority, but this is of little importance here, and does not affect the general principle that some skin diseases are due to fungi.

Whilst admitting that there are such diseases, it must be understood that diseases have been attributed to fungi as a primary cause, when the evidence does not warrant such a conclusion. Diphtheria and thrush have been referred to the devastations of fungi, whereas diphtheria certainly may and does occur without any trace of fungi. Fevers may sometimes be accompanied by fungoid bodies in the evacuations, but it is very difficult to determine them. The whole question of epidemic diseases being caused by the presence of fungi seems based on most incomplete evidence. Dr. Salisbury was of opinion that camp measles was produced by Puccinia graminis, the pseudospores of which germinated in the damp straw, disseminated the resultant secondary bodies in the air, and caused the disease. This has never been verified. Measles, too, has been attributed freely, as well as scarlatina,[H] to fungal influences, and the endeavours to implicate fungi in being the cause of cholera have been pertinaciously persevered in with no conviction. The presence of certain cysts, said to be those of Urocystis, derived from rice, was announced by Dr. Hallier, but when it was shown that no such fungus was found on rice, this phase of the theory collapsed. Special and competent experts were sent from this country to examine the preparations and hear the explanations of Dr. Hallier on his theory of cholera contagion, but they were neither convinced nor satisfied.

As long ago as 1853, Dr. Lauder Lindsay examined and reported on cholera evacuations, and in 1856 he declared—“It will be evident that I can see no satisfactory groundwork for the fungus theory of cholera, which I am not a little surprised to find still possesses powerful advocates.”[I] And of the examinations undertaken by him he writes:—“The mycelium and sporules of various species of fungi, constituting various forms of vegetable mould, were found in the scum of the vomit, as well as of the stools, but only at some stage of decomposition. They are found, however, under similar circumstances, in the vomit and stools of other diseases, and, indeed, in all decomposing animal fluids, and they are therefore far from peculiar to cholera.”

Some writers have held that the atmosphere is often highly charged with fungi spores, others have denied the presence of organic bodies to any extent in the air. The experiments conducted in India by Dr. Cunningham[J] have been convincing enough on this point. This report states that spores and similar cells were of constant occurrence, and were generally present in considerable numbers. That the majority of the cells were living and ready to undergo development on meeting with suitable conditions was very manifest, as in those cases in which preparations were retained under observation for any length of time, germination rapidly took place in many of the cells; indeed, many spores already germinating were deposited on the slides. In few instances did any development take place beyond the formation of mycelium or masses of toruloid cells, but in one or two distinct sporules were developed on the filaments arising from some of the larger septate spores, and in a few others Penicillium and Aspergillus produced their characteristic heads of fructification.

With regard to the precise nature of the spores and other cells present in various instances little can be said, as, unless their development were to be carefully followed out through all its stages, it is impossible to refer them to their correct species or even genera. The greater number of them are apparently referable to the old orders of fungi—SphÆronemei, Melanconei, Torulacei, Dematiei, and Mucedines, while some probably belonged to the Pucciniei and CoÆmacei. Amongst those belonging to the Torulacei, the most interesting was a representative of the rare genus Tetraploa. Distinct green algoid cells occurred in some specimens. Then follow in the report details of observations made on the rise and fall of diseases, of which diarrhoea, dysentery, cholera, ague, and dengue were selected and compared with the increase or diminution of atmospheric cells. The conclusions arrived at are:—

“Spores and other vegetable cells are constantly present in atmospheric dust, and usually occur in considerable numbers; the majority of them are living, and capable of growth and development. The amount of them present in the air appears to be independent of conditions of velocity and direction of the wind, and their number is not diminished by moisture.

“No connection can be traced between the numbers of bacteria, spores, &c., present in the air, and the occurrence of diarrhoea, dysentery, cholera, ague, or dengue, nor between the presence or abundance of any special form or forms of cells, and the prevalence of any of these diseases.

“The amount of inorganic and amorphous particles and other dÉbris suspended in the atmosphere is directly dependent on conditions of moisture and velocity of wind.”

This report is accompanied by fourteen large and well-executed plates, each containing hundreds of figures of organic bodies collected from the air between February and September. It is valuable both for its evidence as to the number and character of the spores in the air, and also for the tables showing the relation between five forms of disease, and their fluctuations, as compared with the amount of spores floating in the atmosphere.

We are fain to believe that we have represented the influence of fungi on man as far as evidence seems to warrant. The presence of forms of mould in some of their incipient conditions in different diseased parts of the human body, externally and internally, may be admitted without the assumption that they are in any manner the cause of the diseased tissues, except in such cases as we have indicated. Hospital gangrene may be alluded to in this connection, and it is possible that it may be due to some fungus allied to the crimson spots (blood rain) which occur on decayed vegetation and meat in an incipient stage of decomposition. This fungus was at one time regarded as an algal, at another as animal; but it is much more probable that it is a low condition of some common mould. The readiness with which the spores of fungi floating in the atmosphere adhere to and establish themselves on all putrid or corrupt substances is manifest in the experience of all who have had to do with the dressing of wounds, and in this case it is a matter of the greatest importance that, as much as possible, atmospherical contact should be avoided.

Recently a case occurred at the Botanic Gardens at Edinburgh which was somewhat novel. The assistant to the botanical professor was preparing for demonstration some dried specimens of a large puff-ball, filled with the dust-like spores, which he accidentally inhaled, and was for some time confined to his room under medical attendance from the irritation they caused. This would seem to prove that the spores of some fungi are liable, when inhaled in large quantities, to derange the system and become dangerous; but under usual and natural conditions such spores are not likely to be present in the atmosphere in sufficient quantity to cause inconvenience. In the autumn a very large number of basidiospores must be present in the atmosphere of woods, and yet there is no reason to believe that it is more unhealthy to breathe the atmosphere of a wood in September or October than in January or May. Dreadful effects are said to be produced by a species of black rust which attacks the large South of Europe reed, Arundo donax. This is in all probability the same species with that which attacks Arundo phragmitis in this country, the spores of which produce violent headaches and other disorders amongst the labourers who cut the reeds for thatching. M. Michel states that the spores from the parasite on Arundo donax, either inhaled or injected, produce violent papular eruption on the face, attended with great swelling, and a variety of alarming symptoms which it is unnecessary to particularize, in various parts of the body.[K] Perhaps if Sarcina should ultimately prove to be a fungus, it may be added to the list of those which aggravate, if they are not the primary cause of, disease in the human subject.

II. What influences can be attributed to fungi upon animals other than man? Clearly instinct preserves animals from many dangers. It may be presumed that under ordinary circumstances there is not much fear of a cow or a sheep poisoning itself in a pasture or a wood. But under extraordinary circumstances it is not only possible, but very probable, that injuries may occur. For instance, it is well known that not only rye and wheat, but also many of the grasses, are liable to infection from a peculiar form of fungus called “ergot.” In certain seasons this ergot is much more common than others, and the belief is strong in those who ought to know something of the subject from experience, viz., farmers and graziers, that in such seasons it is not uncommon for cattle to slip their young through feeding on ergotized grass. Then, again, it is fairly open to inquiry whether, in years when “red rust” and “mildew” are more than usually plentiful on grasses, these may not be to a certain extent injurious. Without attempting to associate the cattle plague in any way with fungi on grass, it is nevertheless a most remarkable coincidence that the year in which the cattle disease was most prevalent in this country was one in which there was—at least in some districts—more “red rust” on grasses than we ever remember to have seen before or since; the clothes of a person walking through the rusty field soon became orange-coloured from the abundance of spores. Graziers on this point again seem to be generally agreed, that they do not think “red rust” has been proved to be injurious to cattle. The direct influence of fungi on quadrupeds, birds, reptilia, &c., seems to be infinitesimally small.

Insects of various orders have been observed from time to time to become the prey of fungi.[L] That known at Guadaloupe under the name of La GuÊpe VÉgÉtale, or vegetable wasp, has been often cited as evidence that, in some instances at least, the fungus attacks the insect whilst still living. Dr. Madianna states that he has noticed the wasp still living with its incumbrance attached to it, though apparently in the last stage of existence, and seeming about to perish from the influence of its destructive parasite.[M] This fungus is called by Tulasne Torrubia sphecocephala.[N] About twenty-five species of this genus of sphÆriaceous fungi have been described as parasitic on insects. Five species are recorded in South Carolina, one in Pennsylvania, found on the larvÆ of the May-bug, and one other North American species on Nocturnal Lepidoptera, one in Cayenne, one in Brazil, on the larva of a Cicada, and one on a species of ant, two in the West Indies, one in New Guinea on a species of Coccus, and one on a species of Vespa in Senegal. In Australia two species have been recorded, and two are natives of New Zealand. Dr. Hooker found two in the Khassya mountains of India, and one American species has also been found at Darjeeling. It has long been known that one species, which has a medicinal repute there, is found in China, whilst three have been recorded in Great Britain. Opinions are divided as to whether in these instances the fungus causes or is subsequent to the death of the insect. It is generally the belief of entomologists that the death of the insect is caused by the fungus. In the case of Isaria sphingum, which is the conidia form of a species of Torrubia, the moth has been found standing on a leaf, as during life, with the fungus sprouting from its body.

Other and less perfect forms of fungi also attack insects. During the summer of 1826, Professor Sebert collected a great many caterpillars of Arctia villica, for the purpose of watching their growth. These insects on arriving at their full size became quite soft, and then suddenly died. Soon after they became hard, and, if bent, would easily break into two pieces. Their bodies were covered with a beautiful shining white mould. If some of the caterpillars affected with the parasitic mould were placed on the same tree with those apparently free from its attack, the latter soon exhibited signs that they also were attacked in the same manner, in consequence of coming into contact with each other.[O]

During the spring of 1851, some twelve or twenty specimens were found from amongst myriads of Cicada septemdecim, which, though living, had the posterior third of the abdominal contents converted into a dry, powdery, ochreous-yellow compact mass of sporuloid bodies. The outer coverings of that portion of the insect were loose and easily detached, leaving the fungoid matter in the form of a cone affixed by its base to the unaffected part of the abdomen of the insect. The fungus may commence, says Dr. Leidy, its attacks upon the larva, develop its mycelium, and produce a sporular mass within the active pupa, when many are probably destroyed; but should some be only affected so far as not to destroy the organs immediately essential to life, they might undergo their metamorphosis into the imago, in which case they would be affected in the manner previously described.[P]

The common house-fly in autumn is very usually subject to the attacks of a mouldy fungus called Sporendonema muscÆ, or Empusa muscÆ in former times, which is now regarded as the terrestrial condition of one of the Saprolegniei.[Q] The flies become sluggish, and at last fix themselves to some object on which they die, with their legs extended and head depressed, the body and wings soon becoming covered with a minute white mould, the joints of which fall on the surrounding object. Examples are readily distinguished when they settle on windows and thus succumb to their foe. Mr. Gray says that a similar mould has been observed on individuals of the wasp family.

A Gryllotalpa was found in a wood near Newark, Delaware, U. S., upon turning over a log. The insect was seen standing very quietly at the mouth of its oval cell, which is formed in the earth, having a short curved tube to the surface. Upon taking it up it exhibited no signs of movement, though perfectly fresh and lifelike in appearance. On examining it next morning it still presented no signs of life. Every part of the insect was perfect, not even the antennÆ being broken. Upon feeling it, it was very hard and resistant, and on making an incision through the thorax it exhaled a fungoid odour. The insect had been invaded by a parasitic fungus which everywhere filled the animal, occupying the position of all the soft tissue, and extending even into the tarsal joints. It formed a yellowish or cream-coloured compact mass.[R]

The destructive silk-worm disease, Botrytis Bassiana, is also a fungus which attacks and destroys the living insect, concerning which an immense deal has been written, but which has not yet been eradicated. It has also been supposed that a low form or imperfect condition of a mould has much to do with the disease of bees known as “foul brood.”[S]

Penicillium Fieberi, figured by Corda on a beetle, was doubtless developed entirely after death, with which event it had probably nothing whatever to do.[T] Sufficient, however, has been written to show that fungi have an influence on insect life, and this might be extended to other animal forms, as to spiders, on which one or two species of Isaria are developed, whilst Dr. Leidy has recorded observations on Julus[U] which may be perused with advantage. Fish are subject to a mouldy-looking parasite belonging to the Saprolegniei, and a similar form attacks the ova of toads and frogs. Gold fish in globes and aquaria are very subject to attack from this mouldy enemy, and although we have seen them recover under a constant change of water, this is by no means always the case, for in a few weeks the parasite will usually prevail.

The influence of fungi upon animals in countries other than European is very little known, except in the case of the species of Torrubia found on insects, and the diseases to which silkworms are subject. Instances have been recorded of the occurrence of fungoid mycelium—for in most it is nothing more—in the tissues of animals, in the hard structure of bone and shell, in the intestines, lungs, and other fleshy parts, and in various organs of birds.[V] In some of the latter cases it has been described as a Mucor, in most it is merely cells without sufficient character for determination. It is by no means improbable that fungi may be found in such situations; the only question with regard to them is whether they are not accidental, and not the producers of unhealthy or diseased tissues, even when found in proximity thereto.

There is one phase of the influences of fungi on the lower animals which must not be wholly passed over, and that is the relation which they bear to some of the insect tribes in furnishing them with food. It is especially the case with the Coleoptera that many species seem to be entirely dependent on fungi for existence, since they are found in no other situations. Beetle-hunters tell us that old Polyporei, and similar fungi of a corky or woody nature, are always sought after for certain species which they seek in vain elsewhere,[W] and those who possess herbaria know how destructive certain minute members of the animal kingdom are to their choicest specimens, against whose depredations even poison is sometimes unavailing.

Some of the Uredines, as Trichobasis suaveolens and Coleosporium sonchi, are generally accompanied by a little orange larva which preys upon the fungus; and in the United States Dr. Bolles informs us that some species of Æcidium are so constantly infested with this red larva that it is scarcely possible to get a good specimen, or to keep it from its sworn enemy. Minute AnguillidÆ revel in tufts of mould, and fleshy Agarics, as they pass into decay, become colonies of insect life. Small Lepidoptera, belonging to the Tineina, appear to have a liking for such Polyporei as P. sulfureus when it becomes dry and hard, or P. squamosus when it has attained a similar condition. Acari and PsocidÆ attack dried fungi of all kinds, and speedily reduce them to an unrecognizable powder.

III. What are the influences exerted by fungi on other plants? This is a broad subject, but withal an important one, since these influences act indirectly on man as well as on the lower animals. On man, inasmuch as it interferes with the vegetable portion of his food, either by checking its production or depreciating its quality. On the lower animals, since by this means not only is their natural food deteriorated or diminished, but through it injurious effects are liable to be produced by the introduction of minute fungi into the system. These remarks apply mainly to fungi which are parasitic on living plants. On the other hand, the influence of fungi must not be lost sight of as the scavengers of nature when dealing with dead and decaying vegetable matter. Therefore, as in other instances, we have here also good and bad influences intermingled, so that it cannot be said that they are wholly evil, or unmixed good.

Wherever we encounter decaying vegetable matter we meet with fungi, living upon and at the expense of decay, appropriating the changed elements of previous vegetable life to the support of a new generation, and hastening disintegration and assimilation with the soil. No one can have observed the mycelium of fungi at work on old stumps, twigs, and decayed wood, without being struck with the rapidity and certainty with which disintegration is being carried on. The gardener casts on one side, in a pile as rubbish, twigs and cuttings from his trees, which are useless to him, but which have all derived much from the soil on which they flourished. Shortly fungi make their appearance in species almost innumerable, sending their subtle threads of mycelium deep into the tissues of the woody substance, and the whole mass teems with new life. In this metamorphosis as the fungi flourish so the twigs decay, for the new life is supported at the expense of the old, and together the destroyers and their victims return as useful constituents to the soil from whence they were derived, and form fresh pabulum for a succeeding season of green leaves and sweet flowers. In woods and forests we can even more readily appreciate the good offices of fungi in accelerating the decay of fallen leaves and twigs which surround the base of the parent trees. In such places Nature is left absolutely to her own resources, and what man would accomplish in his carefully attended gardens and shrubberies must here be done without his aid. What we call decay is merely change; change of form, change of relationship, change of composition; and all these changes are effected by various combined agencies—water, air, light, heat, these furnishing new and suitable conditions for the development of a new race of vegetables. These, by their vigorous growth, continue what water and oxygen, stimulated by light and heat, had begun, and as they flourish for a brief season on the fallen glories of the past summer, make preparation for the coming spring.

Unfortunately this destructive power of fungi over vegetable tissues is too often exemplified in a manner which man does not approve. The dry rot is a name which has been given to the ravages of more than one species of fungus which flourishes at the expense of the timber it destroys. One of these forms of dry rot fungus is Merulius lacrymans, which is sometimes spoken of as if it were the only one, though perhaps the most destructive in houses. Another is Polyporus hybridus, which attacks oak-built vessels;[X] and these are not the only ones which are capable of mischief. It appears that the dry rot fungus acts indirectly on the wood, whose cells are saturated with its juice, and in consequence lose their lignine and cellulose, though their walls suffer no corrosion. The different forms of decay in wood are accompanied by fungi, which either completely destroy the tissue, or alter its nature so much by the abstraction of the cellulose and lignine, that it becomes loose and friable. Thus fungi induce the rapid destruction of decaying wood. These are the conclusions determined by Schacht, in his memoir on the subject.[Y]

We may allude, in passing, to another phase of destructiveness in the mycelium of fungi, which traverse the soil and interfere most injuriously with the growth of shrubs and trees. The reader of journals devoted to horticulture will not fail to notice the constant appeals for advice to stop the work of fungi in the soil, which sometimes threatens vines, at others conifers, and at others rhododendrons. Dead leaves, and other vegetable substances, not thoroughly and completely decayed, are almost sure to introduce this unwelcome element.

Living plants suffer considerably from the predations of parasitic species, and foremost amongst these in importance are those which attack the cereals. The corn mildew and its accompanying rust are cosmopolitan, as far as we know, wherever corn is cultivated, whether in Australia or on the slopes of the Himalayas. The same may also be said of smut, for Ustilago is as common in Asia and America as in Europe. We have seen it on numerous grasses as well as on barley from the Punjab, and a species different from Ustilago maydis on the male florets of maize from the same locality. In addition to this, we learn that in 1870 one form made its appearance on rice. It was described as constituting in some of the infested grains a whitish, gummy, interlaced, ill-defined, thread-like mycelium, growing at the expense of the tissues of the affected organs, and at last becoming converted into a more or less coherent mass of spores, of a dirty green colour, on the exterior of the deformed grains. Beneath the outer coating the aggregated spores are of a bright orange red; the central portion has a vesicular appearance, and is white in colour.[Z] It is difficult to determine from the description what this so-called Ustilago may be, which was said to have affected a considerable portion of the standing rice crop in the vicinity of Diamond Harbour.

Bunt is another pest (Tilletia caries) which occupies the whole farinaceous portion of the grains of wheat. Since dressing the seed wheat has been so widely adopted in this country, this pest has been of comparatively little trouble. Sorghum and the small millets, in countries where these are cultivated for food, are liable to attacks from allied parasites. Ergot attacks wheat and rice as well as rye, but not to such an extent as to have any important influence upon the crop. Two or three other species of fungi are sometimes locally troublesome, as Dilophospora graminis, and Septoria nodorum on wheat, but not to any considerable extent. In countries where maize is extensively grown it has not only its own species of mildew (Puccinia), but also one of the most enormous and destructive species of Ustilago.

A singular parasite on grasses was found by Cesati in Italy, in 1850, infesting the glumes of Andropogon.[a] It received the name of Cerebella Andropogonis, but it never appears to have increased and spread to such an extent as was at first feared.

Even more destructive than any of these is the potato disease[b] (Peronospora infestans), which is, unfortunately, too well known to need description. This disease was at one time attributed to various causes, but long since its ascertained source has been acknowledged to be a species of white mould, which also attacks tomatoes, but less vigorously. De Bary has given considerable attention to this disease, and his opinions are clearly detailed in his memoir on Peronospora, as well as in his special pamphlet on the potato disease.[c] One sees the cause of the epidemic, he says, in the diseased state of the potato itself, produced either accidentally by unfavourable conditions of soil and atmosphere, or by a depravation that the plant has experienced in its culture. According to these opinions, the vegetation of the parasite would be purely accidental, the disease would be independent of it, the parasite would be able frequently even to spare the diseased organs. Others see in the vegetation of the Peronospora the immediate or indirect cause of the various symptoms of the disease; either that the parasite invades the stalks of the potato, and in destroying them, or, so to speak, in poisoning them, determines a diseased state of the tubercles, or that it introduces itself into all the organs of the plant, and that its vegetation is the immediate cause of all the symptoms of the disease that one meets with in any organ whatever. His observations rigorously proved that the opinions of the latter were those only which were well founded. All the alterations seen on examining spontaneous individuals are found when the Peronospora is sown in a nourishing plant. The most scrupulous examination demonstrates the most perfect identity between the cultivated and spontaneous individuals as much in the organization of the parasite as in the alteration of the plant that nourishes it. In the experiments that he had made he affirms that he never observed an individual or unhealthy predisposition of the nourishing plant. It appeared to him, on the contrary, that the more the plant was healthy, the more the mould prospered.

We cannot follow him through all the details of the growth and development of the disease, or of his experiments on this and allied species, which resulted in the affirmation that the mould immediately determines the disease of the tubercles as well as that of the leaves, and that the vegetation of the Peronospora alone determines the redoubtable epidemic to which the potato is exposed.[d] We believe that this same observer is still engaged in a series of observations, with the view, if possible, of suggesting some remedy or mitigation of the disease.

Dr. Hassall pointed out, many years since, the action of fungous mycelium, when coming in contact with cellular tissue, of inducing decomposition, a fact which has been fully confirmed by Berkeley.

Unfortunately there are other species of the same genus of moulds which are very destructive to garden produce. Peronospora gangliformis, B., attacks lettuces, and is but too common and injurious. Peronospora effusa, Grev., is found on spinach and allied plants. Peronospora Schleideniana, D. By., is in some years very common and destructive to young onions, and field crops of lucerne are very liable to attack from Peronospora trifoliorum, D. By.

The vine crops are liable to be seriously affected by a species of mould, which is but the conidia form of a species of Erysiphe. This mould, known under the name of Oidium Tuckeri, B., attacks the vines in hothouses in this country, but on the Continent the vineyards often suffer severely[e] from its depredations; unfortunately, not the only pest to which the vine is subject, for an insect threatens to be even more destructive.

Hop gardens suffer severely, in some years, from a similar disease; in this instance the mature or ultimate form is perfected. The hop mildew is SphÆrotheca Castagnei, LÉv., which first appears as whitish mouldy blotches on the leaves, soon becoming discoloured, and developing the black receptacles on either surface of the leaf. These may be regarded as the cardinal diseases of fungoid origin to which useful plants are subject in this country.

Amongst those of less importance, but still troublesome enough to secure the anathemas of cultivators, may be mentioned Puccinia Apii, Ca., often successful in spoiling beds of celery by attacking the leaves; Cystopus candidus, LÉv., and GlÆosporium concentricum, Grev., destructive to cabbages and other cruciferous plants; Trichobasis FabÆ, LÉv., unsparing when once established on beans; Erysiphe Martii, LÉv., in some seasons a great nuisance to the crop of peas.

Fruit trees do not wholly escape, for Roestelia cancellata, Tul., attacks the leaves of the pear. Puccinia prunorum affects the leaves of almost all the varieties of plum. Blisters caused by Ascomyces deformans, B., contort the leaves of peaches, as Ascomyces bullatus, B., does those of the pear, and Ascomyces juglandis, B., those of the walnut. Happily we do not at present suffer from Ascomyces pruni, Fchl., which, on the Continent, attacks young plum-fruits, causing them to shrivel and fall. During the past year pear-blossoms have suffered from what seems to be a form of Helminthosporium pyrorum, and the branches are sometimes infected with Capnodium elongatum; but orchards in the United States have a worse foe in the “black knot,”[f] which causes gouty swellings in the branches, and is caused by the SphÆria morbosa of Schweinitz.

Cotton plants in India[g] were described by Dr. Shortt as subject to the attacks of a kind of mildew, which from the description appeared to be a species of Erysiphe, but on receiving specimens from India for examination, we found it to be one of those diseased conditions of tissue formerly classed with fungi under the name of Erineum; and a species of Torula attacks cotton pods after they are ripe. Tea leaves in plantations in Cachar have been said to suffer from some sort of blight, but in all that we have seen insects appear to be the depredators, although on the decaying leaves Hendersonia theicola, Cooke, establishes itself.[h] The coffee plantations of Ceylon suffer from the depredations of Hemiliea vastatrix, as well as from insects.[i] Other useful plants have also their enemies in parasitic fungi.

Olive-trees in the south of Europe suffer from the attacks of a species of Antennaria, as do also orange and lemon trees from a Capnodium, which covers the foliage as if with a coating of soot. In fact most useful plants appear to have some enemy to contend with, and it is fortunate, not only for the plant, but its cultivators, if this enemy is less exacting than is the case with the potato, the vine, and the hop.

Forestry in Britain is an insignificant interest compared to what it is in some parts of Europe, in the United States, and in our Indian possessions. In these latter places it becomes a matter of importance to inquire what influence fungi exert on forest trees. It may, however, be predicated that the injury caused by fungi is far outstripped by insects, and that there are not many fungi which become pests in such situations. Coniferous trees may be infested with the species of Peridermium, which are undoubtedly injurious, Peridermium elatinum, Lk., distorting and disfiguring the silver fir, as Peridermium Thomsoni, B.,[j] does those of Abies Smithiana in the Himalayas. This species occurred at an elevation of 8,000 feet. The leaves become reduced in length one-half, curved, and sprinkled, sometimes in double rows, with the large sori of this species, which gives the tree a strange appearance, and at length proves fatal, from the immense diversion of nutriment requisite to support a parasite so large and multitudinous. The dried specimens have a sweet scent resembling violets. In Northern Europe CÆoma pinitorquum, D. By., seems to be plentiful and destructive. All species of juniper, both in Europe and the United States, are liable to be attacked and distorted by species of Podisoma[k] and Gymnosporangium. Antennaria pinophila, Fr., is undoubtedly injurious, as also are other species of Antennaria, which probably attain their more complete development in Capnodium, of which Capnodium Citri is troublesome to orange-trees in the south of Europe, and other species to other trees. How far birch-trees are injured by Dothidea betulina, Fr., or Melampsora betulina, LÉv., or poplars and aspens by Melampsora populina, LÉv., and Melampsora tremulÆ, LÉv., we cannot say. The species of Lecythea found on willow leaves have decidedly a prejudicial effect on the growth of the affected plant.

Floriculture has to contend with many fungoid enemies, which sometimes commit great ravages amongst the choicest flowers. Roses have to contend against the two forms of Phragmidium mucronatum as well as Asteroma RosÆ. Still more disastrous is a species of Erysiphei, which at first appears like a dense white mould. This is named SphÆrotheca pannosa. Nor is this all, for Peronospora sparsa, when it attacks roses in conservatories, is merciless in its exactions.[l] Sometimes violets will be distorted and spoiled by Urocystis ViolÆ. The garden anemone is freely attacked by Æcidium quadrifidum. Orchids are liable to spot from fungi on the leaves, and recently the whole of the choicest hollyhocks have been threatened with destruction by a merciless foe in Puccinia malvacearum. This fungus was first made known to the world as an inhabitant of South America many years ago. It seems next to have come into notoriety in the Australian colonies. Then two or three years ago we hear of it for the first time on the continent of Europe, and last year for the first time in any threatening form in our own islands. During the present year its ravages are spreading, until all admirers of hollyhocks begin to feel alarm lest it should entirely exterminate the hollyhock from cultivation. It is common on wild mallows, and cotton cultivators must be on the alert, for there is a probability that other malvaceous plants may suffer.

A writer in the “Gardener’s Chronicle” has proposed a remedy for the hollyhock disease, which he hopes will prove effectual. He says, “This terrible disease has now, for twelve months, threatened the complete annihilation of the glorious family of hollyhock, and to baffle all the antidotes that the ingenuity of man could suggest, so rapidly does it spread and accomplish its deadly work. Of this I have had very sad evidence, as last year at this time I had charge of, if not the largest, one of the largest and finest collections of hollyhocks anywhere in cultivation, which had been under my special care for eleven years, and up to within a month of my resigning that position I had observed nothing uncommon amongst them; but before taking my final leave of them I had to witness the melancholy spectacle of bed after bed being smitten down, and amongst them many splendid seedlings, which had cost me years of patience and anxiety to produce. And again, upon taking a share and the management of this business, another infected collection fell to my lot, so that I have been doing earnest battle with this disease since its first appearance amongst us, and I must confess that, up to a very short time back, I had come in for a great deal the worst of the fight, although I had made use of every agent I could imagine as being likely to aid me, and all that many competent friends could suggest. But lately I was reminded of Condy’s patent fluid, diluted with water, and at once procured a bottle of the green quality, and applied it in the proportion of a large tablespoonful to one quart of water, and upon examining the plants dressed, twelve hours afterwards, was delighted to find it had effectually destroyed the disease (which is easily discernible, as when it is living and thriving it is of a light grey colour, but when killed it becomes of a rusty black). Further to test the power at which the plant was capable of bearing the antidote without injury, I used it double the strength. This dose was instant death to the pest, leaving no trace of any injury to the foliage. As to its application, I advocate sponging in all dressings of this description. Syringing is a very ready means, but very wasteful. No doubt sponging consumes more time, but taking into consideration the more effectual manner in which the dressing can be executed alone, it is in the end most economical, especially in regard to this little parasite. I have found it difficult by syringing, as it has great power of resisting and throwing off moisture, and if but a very few are left living, it is astonishing how quickly it redistributes itself. I feel confident, that by the application of this remedy in time another season, I shall keep this collection clean. I believe planting the hollyhock in large crowded beds should be avoided, as I have observed the closer they are growing the more virulently does the disease attack them, whereas isolated rows and plants are but little injured.”[m]

The “Gardener’s Chronicle” has also sounded a note of warning that a species of Uredine has been very destructive to pelargoniums at the Cape of Good Hope. Hitherto these plants have not suffered much in this country from parasites. Besides these, there are many other less troublesome parasites, such as Uredo filicum, on ferns; Puccinia Lychnidearum, on leaves of sweet-william; Uredo Orchidis, on leaves of orchids, &c.

If we would sum up the influences of fungi in a few words, it could be done somewhat in the following form.

Fungi exert a deleterious influence—

  • On Man,
    • When eaten inadvertently.
    • By the destruction of his legitimate food.
    • In producing or aggravating skin diseases.
  • On Animals,
    • By deteriorating or diminishing their food supplies.
    • By establishing themselves as parasites on some species.
  • On Plants,
    • By hastening the decay of timber.
    • By establishing themselves as parasites.
    • By impregnating the soil.

But it is not proved that they produce epidemic diseases in man or animals, or that the dissemination of their multitudinous spores in the atmosphere has any appreciable influence on the health of the human race. Hence their association with cholera, diarrhoea, measles, scarlatina, and the manifold ills that flesh is heir to, as producing or aggravating causes, must, in the present state of our knowledge and experience, be deemed apocryphal.

A detailed account of the peculiar properties of this fungus and its employment as a narcotic will be found in Cooke’s “Seven Sisters of Sleep,” p. 337. It is figured in Greville’s “Scottish Cryptogamic Flora,” plate 54.

[B]

Pour chaque 500 grammes de champignons coupes en morceaux d’assez mediocre grandeur, il faut un litre d’eau acidulÉe par deux ou trois cuillerÉes de vinaigre, ou deux cuillerÉes de sel gris. Dans le cas ou l’on n’aurait que de l’eau À sa disposition, il faut la renouveler une ou deux fois. On laisse les champignons macÉrer dans le liquids pendant deux heures entiÈres, puis on les lave À grande eau. Ils sont alors mis dans de l’eau froide qu’on porte À l‘Ébullition, et aprÈs un quart d’heure ou une demi-heure, on les retire, on les lave, on les essuie, et ou les apprÊte soit comme un mets spÉcial, et ils comportent les mÊmes assaisonnements que les autres, soit comme condiment.—Morel TraitÉ des Champignons, p. lix. Paris, 1865.

[C]

Smith’s “Chart of Poisonous Fungi,” fig. 10.

[D]

Ibid. fig. 27. It would be well to become acquainted with all these figures.

[E]

“Skin Diseases of Parasitic Origin,” by Dr. Tilbury Fox. London, 1863.

[F]

Robin, “Hist. Nat. des VÉgÉtaux Parasites.” Paris, 1853. Kuchenmeister, “Animal and Vegetable Parasites of the Human Body.” London, Sydenham Society, 1857.

[G]

Berkeley, in “Intellectual Observer,” Nov., 1862. “Mycetoma,” II. Vandyke Carter, 1874.

[H]

Hallier and Zurn, “Zeitschrift fur Parasitenkunde.” Jena, 1869–71.

[I]

Dr. Lauder Lindsay, “On Microscopical and Clinical Characters of Cholera Evacuations,” reprinted from “Edinburgh Medical Journal,” February and March, 1856; also “Clinical Notes on Cholera,” by W. Lauder Lindsay, M.D., F.L.S., in “Association Medical Journal” for April 14, 1854.

[J]

“Microscopic Examinations of Air,” from the “Ninth Annual Report of the Sanitary Commissioner,” Calcutta, 1872.

[K]

“Gardener’s Chronicle,” March 26, 1864.

[L]

Gray, G., “Notices of Insects that are Known to Form the Bases of Fungoid Parasites.” London, 1858.

[M]

Halsey, “Ann. Lyceum,” New York, 1824, p. 125.

[N]

Tulasne, “Selecta Fung. Carp.” vol. iii. p. 17.

[O]

“Berlin Entom. Zeitung,” 1858, p. 178.

[P]

“Smithsonian Contributions to Knowledge,” v. p. 53.

[Q]

“Wiegmann Archiv.” 1835, ii. p. 354; “Ann. Nat. Hist.” 1841, 405.

[R]

Leidy, “Proc. Acad. Nat. Sci. Phil.” 1851, p. 204.

[S]

“Gardener’s Chronicle,” November 21, 1868.

[T]

Corda, “Prachtflora,” pl. ix.

[U]

Leidy, “Fauna and Flora within Living Animals,” in “Smithsonian Contributions to Knowledge.”

[V]

Murie, in “Monthly Microscopical Journal” (1872), vii. p. 149.

[W]

See genus Mycetophagus, “Stephen’s Manual Brit. Coleopt.” p. 132.

[X]

Sowerby’s “Fungi,” plates 289 and 387, fig. 6.

[Y]

Schacht, “Fungous Threads in the Cells of Plants,” in Pringsheim’s “Jahrbuch.” Berlin, 1863.

[Z]

“Proceedings of the Agri. Hort. Soc. of India” (1871), p. 85.

[a]

“Gardener’s Chronicle” (1852), p. 643, with fig.

[b]

Berkeley, “On the Potato Murrain,” in “Jour. Hort. Soc.” vol. i. (1846), p. 9.

[c]

De Bary, “Die gegenwartig herrschende Kartoffelkrankheit.”

[d]

De Bary, “Memoir on Peronospora,” in “Annales des Sci. Nat.”

[e]

“Reports of H. M. Secretaries of Embassy and Legation on the Effects of the Vine Disease on Commerce, 1859;” “Reports of H. M. Secretaries of Embassy, &c., on Manufactures and Commerce, Vine Disease in Bavaria and Switzerland, 1859,” pp. 54 and 62.

[f]

C. H. Peek, “On the Black Knot,” in “Quekett Microscopical Journal,” vol. iii. p. 82.

[g]

Cooke, “Microscopic Fungi,” p. 177.

[h]

“Grevillea,” i. p. 90.

[i]

“Gardener’s Chronicle,” 1873.

[j]

“Gardener’s Chronicle,” 1852, p. 627, with fig.

[k]

“Podisoma Macropus,” Hook, “Journ. Bot.” vol. iv. plate xii. fig. 6.

[l]

Berkeley, in “Gardener’s Chronicle,” 1862, p. 308.

[m]

“Gardener’s Chronicle,” August 22, 1874, p. 243.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page