Part II: GENERAL DESCRIPTION OF THE ANATOMY OF THE CUBOMEDUSAE. A: Charybdea Xaymacana. a. Environment and habit of life. 1. The CubomedusÆ are generally believed to be inhabitants of deep water which come to the surface only occasionally. Both of the Jamaica species, however, were found at the surface of shallow water near the shore, and only under these circumstances. Whether these were their natural conditions, or whether the two forms were driven by some chance from the deep ocean into the Harbor and there found their surroundings secondarily congenial, so to speak, can be a matter of conjecture only. C. Xaymacana was taken regularly a few yards off-shore from a strip of sandy beach not ten minutes row from the laboratory at Port Henderson. It was seen only in the morning before the sea-breeze came in to roughen the water and to turn the region of its placid feeding-ground into a dangerous lee-shore. Some of the specimens taken contained in the stomach small fish so disproportionately large in comparison with the stomach that they lay coiled up, head overlapping tail. The name Charybdea, then, from the Greek ?a??d?? (a gulf, rapacious), seems to be no misnomer. It is worth mentioning that the digestive juices left the nervous system of the fish intact, so that from the stomach of a Charybdea could be obtained beautiful dissections, or rather macerations, of the brain, cord, and lateral nerves of a small fish. In size C. Xaymacana agrees very well with the average of the genus. The four single tentacles characteristic of the genus are very contractile, varying from two or three to six or seven inches in length, and probably if measurements could be taken while the animal was swimming freely about, the length would be found to be greater still. Charybdea is a strong and active swimmer, and presents a very beautiful appearance in its movements through the water, the quick, vigorous pulsations contrasting sharply with the sluggish contractions seen in most ScyphomedusÆ. With its tentacles streaming gracefully behind, an actively swimming Charybdea presents a fanciful resemblance to a b. External Anatomy.2. Form of Bell. C. Xaymacana shows the typical division of the external surface into four almost vertical perradial areas (Figs. 1-3, p), separated by four stoutly arched interradial ribs or bands (Figs. 1-3, i). These ribs thus play the part of corners to the Cubomedusan pyramid. They are formed by the thickenings of the jelly of the exumbrella, and serve to give the necessary strength to the four interradial corners, each of which bears one of the four tentacles at its base. Each rib is further divided into two longitudinal strips by a vertical furrow lying exactly in the interradius (Fig. 2, ifr). The surface of the exumbrella is thus marked by twelve longitudinal furrows, as seen in the same figure (2). Of these, four are the interradial furrows just mentioned; the other eight are the adradial (afr) furrows, which set off the four perradial surfaces of the pyramid from the four interradial ribs or bands of the corners, each of which is again subdivided, as mentioned above, by the shallower interradial furrows. Each interradial furrow ends above the base of the corresponding pedalium, at about the level of the sensory club; each adradial furrow diverges toward the perradius in the lower third of its course, and thus with its companion furrow narrows down the perradial surface of the pyramid in the lower part of the bell to an area of not much greater width than the niches in which the sensory clubs lie. The projecting interradial corners are of course correspondingly enlarged in the lower part of the bell, and in this way the contours of the surface are changed from those figured in the view of the bell from above (Fig. 2) to those of Fig. 3, which represents a view of the bell margin from below. 3. Pedalia. From the base of the interradial corner bands spring the four pedalia (Fig. 1, pe), gelatinous appendages of the margin having much the same shape as the blade of a scalpel. These in turn bear on their distal ends, as direct continuations, the long, contractile, simple tentacles. The relatively stiff pedalia have the same relation to the flexible tentacles that a driver’s whip-stock has to the long lash. In the living animal the pedalia are found attached to the margin at an angle The pedalia are in reality processes belonging to the subumbrella, as will be shown in the section treating of the vascular lamella. They are composed chiefly of gelatine covered with thin surface epithelium and carrying within the gelatine the basal portion of the tentacle canals. They have received various names at the hands of the writers. Gegenbaur called them “RandblÄtter.” Claus gave them the name of “Schirmlappen,” and incorrectly homologized them with the marginal lobes of other Acraspeda. Claus’s error was corrected by Haeckel, who termed them “Pedalia” or “Gallertsockel,” and homologized them with the pedalia of the PeromedusÆ. Besides furnishing a base of support for the tentacles they may perhaps also serve as steering apparatus, a function for which their thin blade-like form would be admirably adapted. Internal to the base of each pedalium, between it and the velarium, is found a funnel-shaped depression of the ectodermal surface. This is shown in Fig. 5 (ft) in longitudinal section, and in cross-section in Fig. 16. In the latter figure the epithelium of the outer wall of the funnel (mt) is shown much thickened, the result of a stout development of muscle fibres. These are the muscles that in the preserved specimens cause the inward contraction of the pedalia referred to above. 4. Sensory Clubs (marginal bodies, rhopalia). In spite of their position above the bell margin, the four sensory clubs, representing as they do transformations of the four perradial tentacles, are properly classed with the pedalia and interradial tentacles as appendages of the margin. They lie protected in somewhat heart-shaped excavations or niches in the perradial areas of the exumbrella. Each sensory niche is partially roofed over by a covering scale, a hood-like projection from the exumbrella. Below the covering scale the water has free access to the niche and to the sensory club within it. The sensory club consists of a hollow stock directly homologous with tentacle and canal, and a terminal, knob-like swelling, the sensory portion proper. The latter contains on its inner surface—the surface turned towards the bell cavity—two complicated unpaired eyes with lens, retina, and pigment, lying one above the other in the median line; and at the sides of these, two pairs of small, simple, pigmented, bilaterally symmetrical eye spots. At the end of the club, that is, on its lowermost point, lies a sac that contains a As was pointed out by Claus, the bottom of the sensory niche—by bottom is meant the vertical wall that separates the space of the niche from the bell cavity—is formed from the subumbrella only. This arrangement of parts, apparently impossible for a structure so far removed from the bell margin as the sensory niche, will be explained more fully under the special topic of the vascular lamellÆ, or cathammal plates. It is sufficient at this point to refer to Fig. 44, which shows the shield-shaped area mapped out by a vascular lamella that connects the endoderm of the stomach pocket with the ectoderm of the bottom of the niche. By this the exumbrella is completely cut off from any part in the formation of the bottom of the niche. Cross and vertical sections through the niche (Figs. 39 and 37) help to a better understanding of these relations. Since the base of the stalk of the sensory niche lies within the ring of vascular lamella, the whole organ as well as the bottom of the niche belongs to the subumbrella, and so in spite of its position some distance upwards from the bell margin the sensory club is very properly called a “marginal body” (RandkÖrper). The epithelium of the sensory niche consists entirely of the flattened ectodermal surface layer common to the whole exumbrella. No differentiation suggestive of nervous function in addition to that of the sensory clubs can be discovered, although it would be quite natural to expect to find something of the sort, as intimated by Claus (’78, p. 27). It is worth while to mention again the fact that the eyes are directed inwardly toward the cavity of the bell. The larger and lower of the two median eyes looks into the bell cavity horizontally; the smaller upper eye is turned upward toward the region of the proboscis. This is in the normal pendant position of the sensory club. The stalk, however, is very flexible, and a range of other positions of the sense organs is possible, although nothing was observed to suggest that such positions were within the control of the animal. The eyes evidently have as their chief function to receive impressions of what is going on inside the bell, not outside. Perhaps the strongly biconvex, almost spherical lenses of the median eyes also point to a focus on near and small objects. 5. The Bell Cavity and its Structures. In general, the bell cavity repeats the external form of the bell, being almost cubical. In cross-section it appears very nearly square with the angles in the interradii as (a) The Proboscis. From the stomach there hangs down into the bell cavity the proboscis or manubrium, which consists of a short funnel-shaped stalk bearing on its distal end the four mouth lobes or lips. The latter are somewhat broadly V-shaped processes lying in the perradii with the convexity directed outwards, and with the concavity on the inside forming the beginnings of four perradial furrows that are continued upwards to the stomach. The four furrows are shown in the stalk of the proboscis in Fig. 11, which represents a section taken a little above the level of the mouth lobes. The same cross-shaped section of the stalk shows the four perradial prominences or ridges overlying the furrows, which are the direct continuations of the four projecting mouth lobes. (b) The Suspensoria or Mesogonia. The stomach (leaving out of consideration the proboscis) hangs down into the bell cavity as a slightly sagging saucer-shaped roof (Figs. 4 and 5). In the four perradii it is attached to the lateral walls of the subumbrella by four slenderly developed mesentery-like structures, the suspensoria or mesogonia. These are simple ridges of gelatine, covered of course with the epithelium of the bell cavity, which serve to keep the stomach in position much in the way that a shelf is supported by brackets (Fig. 4, su). The suspensorium accordingly has two parts, curved so as to lie at right angles with each other: a vertical portion lying along the wall of the subumbrella, and a horizontal which passes over from the vertical on to the basal wall of the stomach. In Fig. 10 the suspensorium in each quadrant is shown cut across just below the angle between the two parts, so that the two appear in the section as projections on the wall of the stomach and on the wall of the subumbrella. (c) The Interradial Funnels or Funnel Cavities. It will be seen at once that the four suspensoria serve as partitions to divide the upper portion of the bell cavity, the part that lies between the stomach and the lateral walls of the subumbrella, into four compartments. These compartments extend upwards in the four interradii like inverted funnels, whence their name. In the series of cross-sections they can be traced (d) The Velarium. Charybdea, like most of the CubomedusÆ, possesses a velum-like structure around the opening of the bell cavity (Fig. 3, v). The velarium is a thin muscular diaphragm, resembling the true velum in position and essential structures, but differing from the velum in its origin, and in the possession of diverticula from the gastro-vascular system, the velar canals. Of these there are in C. Xaymacana very regularly sixteen, four in each quadrant. Their outline is seen in Fig. 3 to be forked with small irregular accessory processes. As for its origin, the velarium of the CubomedusÆ is commonly accounted to have arisen by fusion of marginal lobes, as in the case of the velarium of the DiscomedusÆ. Pending decisive ontological evidence, the slight notches in the four perradii seen in Fig. 3 may perhaps be taken as slight indications of a primitive unfused condition, but the question will be brought up again when the vascular lamellÆ are discussed. (e) The Frenula. Just as the stomach is attached to the walls of the subumbrella in the four perradii by the suspensoria, so in the lower part of the bell cavity the velarium is attached to the wall of the subumbrella in the perradii by four structures similar to the suspensoria, the frenula velarii. The frenula, like the suspensoria, resemble the brackets of a shelf, with the difference that in the case of the frenula the bracket is above the shelf, their purpose being evidently to keep the velarium stiff against the outflow of water produced by the pulsations of the bell. According to the greater need of strength in this case, we find the frenula stouter, more buttress-like than the suspensoria. The gelatinous ridge that gives them the necessary firmness is thickened so as to be triangular in section, as shown in Fig. 16 (frn). (f) Musculature. As is general in medusÆ, the muscular system, so far as known, is restricted to the subumbrella. It has a very simple arrangement, consisting of a continuous sheet of circular (i. e. horizontal) striated fibres, which is interrupted only in the four perradii by the radially directed muscle fibres of the suspensoria and the frenula. In each quadrant, between the muscle of the suspensorium above and that of the frenulum below, in an area just internal to the sensory niche, there lies a space free from muscle. This interruption of the muscle (g) Nerve Ring. It is in the possession of a clearly defined nerve ring that the CubomedusÆ differ from all other ScyphomedusÆ whose nervous system has been carefully studied. The nerve ring shows very plainly on the surface of the subumbrella as a well-defined clear streak. Its course is zig-zag or festoon-like. In the interradii, at the basis of the tentacles, it lies not far from the bell margin. In the perradii it rises to the level of the sensory clubs. This very striking arrangement is understood at once when it is remembered that the sensory clubs represent the four perradial primary tentacles, and were originally situated on the margin. When all the rest of the margin grew down and away from the four sensory clubs, fusing below them to form the present intact edge of the bell, the four portions of the nerve ring that lay in the perradii were left at the level of the sensory clubs, and the originally straight nerve ring was thus bent into a bow in each quadrant. The finer structure of the nerve will be treated of in the special part to be devoted to the nervous system. c. Internal Anatomy.6. Stomach. The shape of the stomach is approximately that of a biconvex lens, as seen in Fig. 4, which represents a Charybdea cut in halves longitudinally in the perradius. The lumen of the proboscis (the buccal stomach according to Haeckel’s terminology) communicates directly by a funnel-shaped enlargement with the stomach proper, or central stomach of Haeckel. The term basal stomach is carried over by Haeckel from the StauromedusÆ, where it has considerable significance, to the CubomedusÆ, and applied to the upper part of the central stomach. In the stalkless CubomedusÆ, however, it has no significance so far as actual structure goes, and our knowledge of the development of the CubomedusÆ is as yet too simple for us to say that the upper part of the main stomach represents what remains of the basal stomach of an earlier pedunculated stage. The epithelium of the roof of the stomach is not specially differentiated and apparently has little or no part in digestion. The epithelium of the floor, on the other hand, is composed chiefly of very high and thickly crowded columnar cells which are usually described as coarsely granular, 7. Phacelli. Lying in the four interradial corners of the stomach are the four phacelli or tufts of gastral filaments to the number of thirty or thirty-five in each tuft. The filaments are attached to a single stalk, like the fringe of an epaulette or the hairs of a coarse brush. The stalk bearing the filaments is an outgrowth of the lower wall of the stomach just at the point where it fuses with the upper. The phacelli are therefore structures of the subumbrella, proof of which will be found under the special topic of the vascular lamellÆ. The stalk, an indication of which appears in sph. Fig. 6 (the section being a little below the axis of the stalk, which lies horizontally), consists of a firm core of gelatine covered with the high columnar epithelium of the floor of the stomach. The filaments themselves are slender processes repeating the structure of the stalk and having a central axis of gelatine for support covered with glandular epithelium, which in the case of the filaments bears numerous nettle cells. These processes are extremely contractile, and in the living animal show a continuous, slow, squirming movement like a mass of worms. The section just referred to (Fig. 6) shows diagrammatically three of these filaments (fph) cut across in each quadrant. 8. Peripheral Part of the Gastro-vascular System. The proboscis and stomach proper comprise the central part of the gastro-vascular system. In direct communication with the central is a peripheral part composed of pouches or pockets lying in the vertical sides of the cube-shaped bell, just as the central stomach lies in its roof. The peripheral part may be subdivided for convenience of description into the stomach pockets, the marginal pockets, and the canals of the tentacles and sensory clubs. (a) Stomach Pockets. These are four broad, thin pouches lying between the exumbrella and the subumbrella in the four perradii (e. g. The stomach pockets communicate at their top with the central stomach by means of four moderately large openings, the gastric ostia. These are seen in a side view of the whole animal as triangular spaces (Fig. 1, g. o.) near the top of the broad perradial sides. In Figures 7 and 8 they are seen in cross-sections, in Fig. 4 in vertical section. The communication between the stomach and each stomach pocket is guarded by a valve that can cut the one entirely off from the other. The valve is simply the flexible lower margin of the gastric ostium, a thin vertical fold of the floor of the stomach, semilunar in shape, just at the point where it is passing over into the stomach pocket. A longitudinal section, such as is shown in Fig. 4, gives the best idea of the form and position of the valve that can be obtained from any simple section. Internal to the valve is seen a depression of the stomach wall, almost worthy to be called a pocket. The valve itself lies as a wall across the end of this depression, obstructing a free course to the stomach pocket. It will be seen at once that any pressure of fluids in the stomach against this vertical wall, or valve, would serve only to press it against the inner surface of the exumbrella, and thus effectually close the entrance into the stomach pocket. Such a closure would both keep the juices of the stomach from entering the pockets and the embryos in the pockets from entering the stomach before the proper time. The depression of the floor of the stomach just internal to the valve may possibly be a structure of some morphological significance. In one series of sections it was found that in two of the quadrants the depression was deeper than that represented in Fig. 4, and extended perceptibly into the outer or vertical portion of the suspensorium. Fig. 32 is a diagram giving a vertical reconstruction in the perradius of the cross-sections in which this deepened depression was noticed. Fig. 31 is a drawing (the outline by camera lucida) of one of the cross-sections, through the lowermost Two more diagrams, Figs. 33 and 34, are added in order to give a more complete understanding of a gastric ostium and its neighboring structures, the mesogonial pocket and the valve. Fig. 33 is a view of the gastric ostium and valve from the stomach side, and represents the appearance that would be given by a thick section through the arrow x-y in Fig. 32, in a plane at right angles to the paper. The heavy lines outlining the gastric ostium (enr and enfl) represent the place where the plane of the section has cut across the epithelium of the roof of the stomach above the ostium and the epithelium of the floor of the pocket-like depression internal to the valve. The continuation of the two heavy lines in either side of the ostium represents the region where the roof and floor of the stomach meet; i. e., the edge of the lens-shaped stomach. The semilunar outline of the valve (vg) is shown by a light line just above the epithelium of the depression. As is seen by the reference arrow in Fig. 32, the valve lies a little external to the immediate plane of the section, and hence it is that its inner surface is seen in Fig. 33 and not a section of it. The vertical part of the suspensorium (su) is seen in section below the epithelium Fig. 34 represents a horizontal section through the gastric ostium at the level of the arrow a-b in Fig. 32, or arrow c-d in Fig. 33. The reference numbers 5, 6 and 7, 8 denote similar points in the two figures 33 and 34. Fig. 32 as referred to Fig. 34 is through the arrow e-f; Fig. 33 is through the arrow c-d. In the series of cross-sections, Fig. 9 is taken at a level a little below that of Fig. 34, and passes through the basal part of the valve (vg). (b) Marginal Pockets. The part of the peripheral portion of the gastro-vascular system in each quadrant which is called the stomach pocket extends downwards as far as the sensory niche. Here by the coming together of the walls of the exumbrella and subumbrella the space between them is obliterated (Fig. 15) in the immediate perradius. From the sensory niche downward to the margin each stomach pocket is thus divided into two smaller pouches, the marginal pockets (mp). In each side of the Cubomedusan cube there are, then, in Charybdea two marginal pockets; or in all eight, a characteristic of the family CharybdeidÆ. The marginal pockets as the name implies extend downwards to the bell margin, and are continued into the velarium as the velar canals. Of these (Fig. 3) there are two from each marginal pocket, or sixteen in all. The constancy in their number is one of the characteristics that distinguish C. Xaymacana from the very closely related C. marsupialis of the Mediterranean. (Compare Fig. 3 with the similar one by Claus for C. marsupialis, ’78, Taf. I., Fig. 6.) The forked shape, while to be sure the common form in C. marsupialis, is an almost invariable characteristic in C. Xaymacana. It may be mentioned again that the presence of these canals is one of the chief features that distinguish the velarium of the ScyphomedusÆ from the velum of the HydromedusÆ. (c) Canals of the Sensory Clubs and Tentacles. The four interradial definitive tentacles and the four perradial transformed tentacles, the sensory clubs, are hollow, and their canals communicate directly with the peripheral part of the gastro-vascular system. The canal of the sensory club in each quadrant leads directly out from the stomach by a somewhat funnel-shaped opening formed by the approximation of the two walls of the stomach pocket. The relation of the canal of the sensory club to the stomach pocket is seen at a glance in Fig. 37. It is given by means of cross-sections in Figs. 12-14. Figure 12 shows the inner The endoderm lining the canal of the sensory club is specially differentiated. In the stalk it is more columnar than the epithelium of the stomach pockets, and is made up of cells containing a brightly staining nucleus with very little trace of cytoplasm. The cell bodies appear as if filled with a clear, non-staining fluid. Perhaps these cells give the stalk elasticity to act in connection with the thin layer of longitudinal muscle-fibres that are found just external to the supporting lamella. The epithelium of the terminal enlargement of the canal is composed of very high narrow cells, many of which show two nuclei of equal size and staining quality lying side by side. In continuation of the specialized epithelium of the perradial furrows in the floor of the stomach the inner wall of the stomach pocket shows a strip of similar densely crowded columnar cells leading from the gastric ostium downwards to the canal of the sensory club. As in the other case, the strip probably represents a specially ciliated tract, and perhaps in it we see the reason why the canal of the sensory club is almost always found to contain either spermatozoa which are shed by the male reproductive organs directly into the stomach pocket, or else floating cells of the kind to be described in the next section. The canals of the interradial tentacles arise from the peripheral gastro-vascular system much lower down than those of the sensory clubs, since these tentacles have preserved their primary positions with reference to the bell margin. Figure 16 represents a section taken at the level of the base of the pedalia which gives the connection of the tentacle canals with the gastro-vascular system. At the level below the sensory niche the four broad stomach pockets have been divided, as we have seen, into the right marginal pockets (mp). The figure shows that in the interradial corners the longitudinal septa (ivl, in the preceding figures), or lines of fusion between the two walls of the peripheral gastro-vascular The connecting canals are of morphological importance in that they are supposed, with much reason, to represent in the CubomedusÆ the circular canal of the HydromedusÆ. 9. Reproductive Organs. The sexes are separate in Charybdea. In both sexes the reproductive organs consist of four pairs of long leaf-like bodies, each leaf attached along one edge to the wall of the subumbrella in an interradius (see Fig. 1, r), and hanging free in the stomach pockets. From this position in the stomach pockets it is evident that the reproductive organs are endodermal. The lines of attachment of each pair is just internal to the longitudinal vascular lamella that fuses the outer and inner walls of the stomach pockets together in the interradius (ivl), and the reproductive organs are therefore structures belonging to the subumbrella. It is interesting to note how careful examination of the medusan organization takes away from the importance of the outer cup, the exumbrella, and adds to that of the inner, the subumbrella. We have seen that the phacelli and the sensory clubs, from whose position it would be supposed that they belonged to the exumbrella, are organs of the subumbrella, and that there is no muscle-tissue in the exumbrella; we find now that the reproductive organs belong to the subumbrella, and it will be shown later that the tentacles, like the sensory clubs, are structures of the subumbrella also. To the exumbrella are left only the functions of support and covering. The mature reproductive organs extend very nearly throughout the entire vertical length of the bell, and are therefore found in the series of cross-sections in all but the uppermost and lowermost (Figs. 7-15 r). The organs consist of germ cells within, covered by an epithelium of columnar cells that shows here and there nettle cells. The ova are found with different amounts of yolk, according to age, surrounding a large nucleus almost devoid of chromatin and an intensely staining nucleolus. In young ova there appears very plainly in every case at least one small deeply staining body inside the nucleus, which very much resembles the nucleolus. These are probably so-called yolk nuclei, and while I have not 10. Floating and Wandering Cells. In the stomach pockets, the canals of the sensory clubs, and even in the stomach itself, are found in varying numbers freely floating cells having the appearance of young ova. They vary in size, the smallest being of the size and having the general aspect of the small ovocytes found in the ovary. The largest (Fig. 70) have exactly the same structure as the young ovarian eggs before they have begun to accumulate yolk. The granular deeply staining cytoplasm, the clear non-staining nucleus with its bright nucleolus and the nucleolus-like yolk nucleus, all show beyond doubt that these freely floating cells originate in the ovary. In some of my preparations these cells are found not only floating free, but wandering through the tissues. Fig. 70 shows two such wandering cells fixed just as they were making their way either through the digestive epithelium into the gelatine of the floor of the stomach, or from the gelatine into the epithelium. The former seems the more probable, though why they should want to get into the gelatine is not very easy to conceive. Perhaps there is some connection between this and the appearance that the young ovarian eggs have of pushing their way from the epithelium into the gelatine of the ovary. And of course it is not impossible that the whole phenomenon is abnormal, due to rupture of the ovaries which sets free young ova to exhibit their amoeboid tendencies under new conditions. Against such an explanation, on the other hand, might be urged the fact that what seem to be the small floating cells are found However that may be, this amoeboid action of cells having the structure of ova brings to mind the remarkable form of asexual reproduction described by Metschnikoff for Cunina proboscidea, under the name of “Sporogonie.” Unfortunately Metschnikoff’s original paper was not accessible to me, so that I was unable to obtain more particulars on the subject than those given in Korschelt and Heider’s text-book (p. 33). The reproductive organs of both males and females of Cunina proboscidea are said to produce, besides the usual distinctively sexual elements, neutral amoeboid germ cells, which wander into the endoderm of the stomach and circular canal, and also penetrate into the gelatine of the subumbrella. These amoeboid cells divide parthenogenetically. One of the two cells of the first cleavage continues to divide and eventually forms an embryo of Cunina; the other remains amoeboid and serves for movement, attachment and nourishment of the embryo. Charybdea, however, has shown no sign of any such reproductive process on the part of its floating and wandering cells. The only indication that I get as to their use points to a possible nutritive function. The enlarged terminal portion of the canal of the sensory club almost invariably contains a number of the small-sized floating cells. These have a vacuolated, half disintegrated appearance, with the nucleus always compact and brightly staining. Now, examination of the high columnar cells that line the enlargement of the canal shows the presence in the cells of bodies of exactly the same appearance as those in the lumen. In one case a floating cell was found just at the end of an epithelial cell, to all appearance half ingested. The identity of the bodies inside the cells and those in the lumen is shown very clearly in some sections of material fixed in formalin, which preserves nuclei, cell walls and general outlines well enough, but does not retain the cytoplasm, and hence is useless for most purposes of histology. In the endodermal cells of the terminal enlargement thus preserved are found all the more distinctly the bright, compact, degenerated nuclei of the ingested cells, while in the lumen are seen other bright, compact nuclei with the poorly preserved remains of cell substances around them. In addition to the evidence from the appearance of the floating cells themselves and their ingestion by the endodermal cells, a little collateral evidence may perhaps be brought in B: Tripedalia Cystophora.a. Habitat.The species upon which the new family was founded was obtained in great abundance in one locality in Kingston Harbor in the summer of 1896. The environment was even more unlike that in which CubomedusÆ have been found heretofore than in the case of Charybdea Xaymacana. On the west side of the Harbor there is a part more or less cut off from the main body of water, and so from the ocean, by a peninsula. This sheltered bay is dotted with small mangrove islands which toward the head of the bay become so numerous as virtually to convert it into a mangrove swamp. The water is shallow and discolored with organic matter, showing that the tide does not exercise much influence here, and the bottom is for the most part a black mud, deep enough to make wading very uncomfortable but not impossible near shore. The islands rise but slightly above the level of the waters, and the thick vegetation that covers them, for the most part mangroves, grows out into the water on all sides, forming a fringe of overhanging boughs. It was here in the shelter of the boughs, among the roots and half-submerged stems of the mangroves, that the small Cubomedusa was found to thrive. It could be obtained in great abundance almost any day, and of all sizes from the largest adults with stomach pockets filled with eggs or embryos down to small specimens only about two millimeters in diameter. In but one other place was Tripedalia found, and that was a similar region of half landlocked water skirted with mangroves, situated near Port Royal, across the harbor from the locality just mentioned. It would be hard to find places in which the conditions of life were more strikingly different from those of the pure deep sea in which the CubomedusÆ have been generally found before. The slight brownish yellow pigment made the small medusÆ a little difficult to see in the discolored water, but like the pellucid Charybdea in the clear water of the harbor, their active movements gave away their presence. The swimming was very vigorous and was effected by quick, strong pulsations (as many as 120 per minute were counted), very different from the slow, rhythmic contractions of the Tripedalia endured captivity much more hardily than the Charybdea, and would live in aquaria happily enough for a number of days—no attempt was made to see how long. Specimens with their stomach pockets filled with ripe spermatozoa, or with young at any stage from egg to planula, were taken in plenty from the latter part of June to the latter part of July. In each female the young were all at the same stage. The embryos were thrown out in the aquaria as free-swimming planulÆ, which settled down on the bottom and sides of the glass in a day or two, and quickly developed into small hydras with mouth and typically with four tentacles (and four tÆnioles, W. K. B.), though three and five were by no means uncommon. In this condition they lived for three weeks without essential change, and they were still giving no promise of further development when the laboratory broke up and the jars had to be emptied. b. External Anatomy.The structure of the CubomedusÆ seems to be that of a type well established, and accordingly offers no very wide range of diversity among the different genera. The Charybdea that has just been described is a very typical form and will serve well as a standard with which to compare our species of Tripedalia. The resemblances are so close that a detailed account of the anatomy of the second form would involve much needless repetition. It is hardly necessary to do more than merely point out in what points Tripedalia resembles Charybdea and in what points it differs. The form of the bell is less pyramidal than in Charybdea. Some measurements even gave the breadth greater than the height. The external surface is divided, as typical for the CubomedusÆ, into the four perradial sides and the four convex interradial ridges, and the furrows that separate these areas are with one small exception exactly the same as those of Charybdea, as may be seen by comparing the series of sections of Tripedalia (Figs. 21-30) with those of Charybdea (Figs. 6-15). The exception is almost too slight to mention. The adradial furrow in each octant which sets off the corner rib from the perradial surface in The pedalia conform entirely to the description given those of Charybdea, except that there are three attached to the bell margin in each interradius instead of one, and that the blade of each pedalium is much narrower. The sensory clubs also show exactly the same relation to the bell and exactly the same structure. In the bell cavity the proboscis has a longer and better defined stalk than that of Charybdea, and has the further and more important difference of possessing special sensory organs, to the number of fifteen or twenty. The suspensoria are much more developed than in Charybdea, so that the interradial funnels lying between are more marked. In a corresponding way the frenula are larger and stouter (Figs. 28, 29, frn). The musculature shows no new features and differs only in being comparatively more strongly developed and having a more pronounced striation. The nerve ring follows the same looped course from the margin in each interradius up to the level of the sensory clubs in the perradius. c. Internal Anatomy.The stomach offers no peculiarities, and the phacelli also agree with those of Charybdea except in having a smaller number of filaments in each tuft. The stomach pockets are not guarded by such well-developed valves as those described for Charybdea, though the valvular nature of the lips of the gastric ostia is indicated and the valvular functions undoubtedly performed. The gastric ostia are smaller (cf. Figs. 7 and 22), and this makes highly developed valves less necessary. No trace of anything corresponding to mesogonial pockets was noticed. In the matter of the marginal pockets, however, we find that the agreement with Charybdea is no longer continued. The regions that correspond to the eight marginal pockets of Charybdea are formed, as in that genus, by the coming together of the exumbrella and subumbrella at the sensory niche (Figs. 25-28), but each of these regions is subdivided, as it is not in Charybdea, into two marginal pockets, a larger (mp, Figs. 28-29) and a smaller (mp´). In this way sixteen marginal pockets are The smaller velar canals, a pair in each perradius, seem to have in the males some function in connection with the storing of matured spermatozoa. In specimens with ripe testes they are very often found crowded to distension with spermatozoa, while the other velar canals may or may not contain them, and generally do not. The epithelium lining them is, like that of the others, composed of columnar cells higher on the wall turned toward the bell cavity than on that turned towards the exterior, but otherwise not specially differentiated. I searched in vain for any trace of opening by which the spermatozoa might gain the exterior. Fig. 29 shows another point which may be mentioned in passing, namely, that the canal of each of the three tentacles opens into the peripheral gastro-vascular system independently. The central tentacle of each group is the homologue of the single tentacle of Charybdea, and is formed in Tripedalia before the two lateral tentacles appear. Its communication with the peripheral pocket system is higher up than the openings of the lateral tentacles, so that in the section drawn the latter are just beginning to be indicated (ct´). It remains only to speak of the reproductive organs of Tripedalia. The sexes are separate in this form also, and ovaries and testes have the same structure as is found in other CubomedusÆ. The development of floating masses of cells in the females, however, is a feature which, so far as I know, has not been observed before. These masses, of which a small one is represented in section by Fig. 71, are apparently developed along with the eggs, and repeat the structure of the ovary to all intents the same as if they were various-sized fragments of it broken loose. They consist mostly of high, columnar epithelial cells surrounding a few |