In some sections of the country sweet clover is gaining in favor as a silage crop, either alone or in mixtures with other plants. The silage made from this plant will keep better than that made from most legumes, as it does not become slimy, as is so often the case with red clover or alfalfa silage. It produces a palatable feed, which should contain more protein than well-matured corn silage. When sweet clover makes sufficient growth after grain harvest, or when seeded alone, it is not necessary to cut it for silage until fall. At this time it may be run into the silo alone or in mixture with corn. Excellent results have been obtained by placing alternate loads of corn and sweet clover in the silo. (Fig. 10.) When the first crop the second season is not needed for pasturage, ensiling may prove to be the most economical and profitable way of handling it, as it is necessary to cut this crop for hay at a time of the year when the weather conditions in humid regions are very likely to be unfavorable for haymaking. The large percentage of leaves which usually are lost from shattering when harvesting the hay will be saved when the crop is run into the silo. The first crop the second season will produce approximately two-thirds as much silage to the acre as corn when it is cut at the time it should be cut for hay. The second crop may then be harvested for seed. When sweet clover is handled in this manner, approximately two-thirds of the total corn acreage which would be cut for silage may be permitted to mature, as the first crop of sweet clover will replace the corn silage, while the seed crop ordinarily will bring as much per acre as the corn. In addition to this, the roots and stubble will add large quantities of vegetable matter to the soil. Some farmers do not cut sweet clover for silage until it is in full bloom. When this is done, 10 to 12 tons of silage will be obtained per acre, but the plants will be killed by the mowing. When the green plants are ensiled, the crop preferably should be cut with a grain binder. (See illustration on title-page and fig. 11.) This will solve the difficulty of cutting a high stubble and will at the same time bind the plants so that they may be run through the silage cutter without difficulty. Green plants, and especially the first crop of the second season, contain too much moisture to be run into the silo immediately after cutting. In some cases quantities of juice have been pressed out of the bottom of the silo, and as a result the silage settled considerably. Several silos in Illinois have been filled with sweet-clover straw. When this is done it is necessary to add sufficient water to moisten the dry stems. These stems become soft in a short time and ensile in good condition. When the seed crop is thrashed with either a grain separator or a clover huller the stems are broken and crushed sufficiently to render it unnecessary to run them through a silage cutter. Care must be taken when ensiling the straw to add sufficient water, if molding is to be avoided. It will probably be necessary to add water at the blower and also at the top of the silo. It is essential to tramp the straw thoroughly, so as to exclude as much air as possible. After the silo is filled it should be covered with a layer of green plants and thoroughly soaked with water. Table III gives analyses of several sample of sweet-clover silage as compared to corn silage.
[7] Analysed by the Illinois Agricultural Experiment Station. [8] Analysed by the Bureau of Chemistry. [9] Analyses compiled by Henry and Morrison. As shown in Table III the analyses of the first and second years' growth of sweet clover compare favorably in food elements with corn silage. It is to be expected that the silage made from the sweet clover straw would contain less protein and carbohydrates than that made from the entire plants, as most of the leaves shatter from sweet clover before the seed crop is cut. Considerable protein and carbohydrates were lost from the silage made from the first crop the second season, as the plants were run into the silo as soon as they were cut. Much juice was pressed from the bottom of this silo. An analysis of this juice is given on page 21. |