CHAPTER IV MEDITERRANEAN PROGRESS

Previous
B

But before we proceed further, it is essential that we look carefully into the building, administration, and handling of those fleets of vessels which made history as they scudded across the blue waters of the south of Europe. We want to know, also, something of the composition of their crews, their officers, and the divisions of control, of the tactics employed in naval warfare, of the limitations in manoeuvring, the methods of working the oars, of rigging the ships, of steering, and so on.

Greece had accepted the ship as it had evolved in the hands of the Phoenicians with certain modifications. We are no longer anxious to trace that development, but rather to see, in the first place, how the Greeks availed themselves of their inheritance. In the building of their ships the Greeks gave neither sternpost nor stempost. The timbers of the ships were held together by means of wooden pegs (or treenails, as we should call them), and also by metal nails, bronze being chosen in preference to iron nails for the most obvious of reasons. But in those days, as any student of Greek history is aware, not infrequently craft had to be transported. Therefore the fastenings were so placed as to allow of the ship being divided into sections for carrying across land to some distant water. The outer framework of the hull was found in the keel and ribs. The ship’s planking, which varied from the somewhat ample 2¼ inches to 5¼ inches thick, was fastened through the ribs to the beams.

The warships had most necessarily to be built of the utmost strength to sustain the terrible shocks in ramming. To prevent the damage incurred being disastrous, cables—called hypozomata—undergirded the ship. The Greek word signifies the diaphragm or midriff in anatomy, but in the plural it is used to designate the braces which were passed either underneath or horizontally around the ship’s hull. The reader may remember that in “Sailing Ships and their Story” I called attention to the Egyptian ships, which used to be strengthened by stretching similar cables not girth-wise, but direct from stem to stern across the deck over wooden forks amidships. Primarily, then, these braces on the Greek ships were to counteract the effects of ramming; incidentally they kept the ship’s hull from “working” when she pounded in heavy seas.

And then when the shipwright had finished his construction of the ship she was coloured with a composition consisting of paint and wax, the latter serving to give these speedy ships the minimum of skin-friction. The colours chosen were purple, two whites, violet, yellow, and blue. Green, for the sake of invisibility, was used for scouts and pirates. The primitive Grecian ships had only patches of colour at the bows, the rest of the hull being covered black with tar. Occasionally neither wax nor tar was employed, but the hull was sheathed with lead outside the planking, layers of tarred sailcloth being placed in between the two materials. They made their sails either of linen, or, sometimes, of papyrus fibre or flax, and there were two kinds of sailcloth which the Athenian Navy utilised. The bolt-ropes of the sails were of hide, the skins of the hyena and seal being especially employed. The ropes used for the different purposes of the ship were of two kinds. Some were of strips of hide; more frequently they were from the fibre of papyrus or from flax or hemp. The sails were often coloured—black for mourning, purple or vermilion for an admiral or monarch. Topsails were sometimes coloured, the lower sail remaining uncoloured. The green-hulled scouts also had their sails and ropes dyed to match the colour of the Mediterranean. And sometimes the interesting sight would be seen of sails with inscriptions and devices woven in golden thread into the fabric.

There is a Greek word askos, which signifies a leathern bag or wine-skin, from which the word askoma is derived. The latter was the word given to a leathern bag which was attached to the oar so as to prevent the water from penetrating through into the ship, and yet allowed, with only slight friction, the oar to be brought backward and forward. There is something slightly similar to-day in the leather flap which is found on the Bristol Channel pilot cutters, covering the discharge from the watertight cockpits, the motion of the ship through the water causing the flap to be pressed tightly against the hull, and thus preventing any water from entering. But in the instance of the Grecian craft the flap was much bigger. There were no rowlocks, but the oar was fastened by a leathern loop to a thole-pin against which the rower pulled his oar.

Bear in mind that, whereas the Greek merchant-ship mostly relied on sails, the warship was essentially oar-propelled. And because she must needs carry a large number of rowers they needed supervision. Hence a gangway was placed on either side of the ship, both for that purpose and also for the placing of the fighting men. Illustrations on ancient Greek vases clearly show that some warships were fitted with a hurricane-deck above, and this extended down the length of the ship, but not from one side to the other. This hurricane-deck, if we are to give any credence to contemporary illustrations, was a fairly light affair raised on vertical supports of sufficient strength. In addition to the human ballast of the oarsmen, gravel, sand, and stone were used for trimming the ship. For instance, it might be necessary to get the bows deeper into the water so that the ram came into operation; or, after ramming and receiving damage, it might be found advisable to trim the ship by the stern so as to get the bows well out of water. To what extent these craft leaked one cannot say; but one can reasonably suppose that as they were built of unseasoned wood, as the shocks from ramming were very injurious, and as they had to suffer a good deal of wear and tear through frequent beaching, they made a fair amount of water. At any rate, it is certain that they provided against this in arranging an Archimedean screw, worked by a treadmill, or buckets for getting rid of the bilge-water. It is probable, also, that the drinking-water in cisterns or skins would be deposited as low in the hull as possible.

The Greeks, in addition to their technical ability, had inherited a similar sea-instinct to that of the Phoenicians, and this keenness is by no means absent from Greek literature. What, for instance, could be more enthusiastic than the following exquisitely poetic extract from Antipater of Sidon:—

“Now is the season for a ship to run through the gurgling water, and no longer does the sea gloom, fretted with gusty squalls; and now the swallow plasters her globed houses under the rafters, and the soft leafage laughs in the meadows. Therefore wind up your soaked cables, O sailors, and weigh your sunken anchors from the harbours, and stretch the forestays to carry your well-woven sails. This I, the son of Bromius, bid you, Priapus of the anchorage.”3

It is an exhortation, at the return of spring, to refit the ships which had been laid up since the winter, tethered to the “soaked cables.” It is an invitation to get the ships properly afloat, to step the masts and set up the forestay in all readiness for getting under way for the sailing season.

Or again, listen to Leonidas of Tarentum in a similar theme.

“Now is the season of sailing,” he says, “for already the chattering swallow is come and the pleasant west wind; the meadows flower, and the sea, tossed up with waves and rough blasts, has sunk to silence. Weigh thine anchors and unloose thine hawsers, O mariner, and sail with all thy canvas set: this I, Priapus of the harbour, bid thee, O man, that thou mayest sail forth to all thy trafficking.”4

“Mine be a mattress on the poop,” sings5 Antiphilus with no less ecstasy of the life on board a Grecian ship, “mine be a mattress on the poop, and the awnings over it sounding with the blows of the spray, and the fire forcing its way out of the hearth-stones, and a pot upon them with empty turmoil of bubbles; and let me see the boy dressing the meat, and my table be a ship’s plank covered with a cloth; and a game of pitch-and-toss, and the boatswain’s whistle: the other day I had such fortune, for I love common life.”

Three thousand years, indeed, before the birth of our Lord there were ships sailing the Ægean Sea, but it was only the progress of time and experience which made these craft and their crews’ ability anything more than primitive. As you look through the poems of Homer you find various significant references to craft, and he speaks of the “red-cheeked” ships, referring to the vermilion-coloured bows, where a face was frequently painted, red being the conventional colour in those early times for flesh. The same idea is still seen in the Chinese junks and the Portuguese fishing craft.

Mine be a mattress on the poop.

The earliest Grecian ships were crescent-shaped, and the stern so resembled the horn of a cow that it was called the korumba or point. There is a reference in the Iliad to the high-pointed sterns of ships. From Homer, too, we know that the timber employed in shipbuilding consisted of oak, pine, fir, alder, poplar, and white poplar; that the masts and oars were of fir, that the woodwork of the hull was erected on shipbuilders’ stocks. The word used for the latter was druochoi—meaning the props on which the keel (tropis) was laid. The hull was secured by treenails and dowel-joints, the planking being laid over the ribs. Further, we know also that the ship of Homer had either twenty or fifty oarsmen.

The pre-Homeric Greeks did not use thole-pins, but the oars were fastened to the gunwale by means of leathered hoops. It was not till a later date that the pins already mentioned came into use. It is noticeable, too, that Homer uses the word kleides in referring to the thwarts on which the rowers sat. For the singular of this word means a hook or clasp, and is used in this sense for the thwart or rowing bench which locked the sides of the ship together. Zuga is also used in the Odyssey to signify the same thing. In attempting to piece together these fragmentary details of the Homeric ship, we must bear in mind that below the zuga or rowing thwarts the hold was undecked, but that fore and aft there ran the half-decks—ikria, Homer calls them. The forecastle formed at once a cabin and a look-out post, and helped to keep the forward end protected when butting into a sea. Right aft, of course, sat the helmsman, or kubernetes, and it is supposed that a bench here stretched across the poop on which, as he sat on deck, he could rest his feet and work the oieion or handle of the rudder. A Greek ship usually had two pedalia or steering oars, one being placed on either quarter. These were joined together across the ship by means of cross-bars (zeuglai), to which the tiller or handle was attached. Finally, over the poop rose the tail-piece which is so noticeable in some of the vase-illustrations of Grecian ships, and had its counterpart in the lotus-bud seen in the ships of the Egyptians.

Homer speaks of “stepping the mast” (histos), and apparently the step was affixed as low as possible, its heel being supported by a prop and capable of being easily lowered before the galley went into battle under oar-propulsion alone. The forestays, which just now we saw Antipater urging the sailors to stretch, were two in number. The Homeric word for these is protonoi, though the word was used by Euripides in speaking of the braces which controlled the yards. On the yard which stretched at right angles across the mast both merchantmen and warships set the squaresail, and the use by Homer of the word meruomai for drawing up or furling sails is sufficiently indicative that the ancient Greek sailors stowed sail not by lowering it on deck as in a modern fore-and-after, but after the fashion of a modern full-rigged ship.

We find mention also of the halyards—one on each side of the mast is shown in the Greek vase designs—which supported the yard to the top of the mast, the sail being reefed by means of brailing lines. The same word that we have just mentioned, for “drawing up” or “furling” sails, was also employed for drawing up the cables. And here again there is a further connection. The plural kaloi is used to mean (1) cables, (2) reefing ropes (i.e. brails), or even reefs as opposed to the sheets (podes) and braces (huperai). Euripides employs the expression kalos exienai, meaning to “let out the reefs.” And (3) kaloi also means not merely generally a rope, but also a sounding line, which again is evidence that these ancient seamen found the depth of water as the modern sailor feels his way through shoal seas. The word just given for sheets was applied to the lower corners of the sail—clews as we nowadays call them—and thus naturally the ropes attached to the foot (or lowest part) were also called podes. The braces were called huperai, obviously because they were in fact the upper ropes.

As we have just seen from Antipater and Leonidas, the mariner used cables and hawsers for securing his ship, these being sent out from both bow and stern. Instead of anchors the early Greeks used heavy stones for the bow cables, whilst other hawsers were run out from the stern to the shore and hitched on to a big boulder or rock. If the former, then there was a hole therein. An endless rope was rove through this perforated stone, so that thus the ship could be hauled ashore for disembarking, or when wishing to go aboard again, sufficient slack of course having been left at the bow cables. A long pole was used for shoving off, while a ladder, which is seen more than once in Greek vase illustrations, was carried at the stern for convenience in descending to the land from the high-pointed sterns.

There were two sailing seasons. The first was after the rising of the Pleiads, in spring; the second was between midsummer and autumn. When, after the setting of the Pleiads, the ship was hauled up into winter quarters on land, she was supported by props to keep her upright, and then a stone fence was put round her. This afforded her protection against wind and weather. The cheimaros, or plug, was then taken out from the bottom so as to let out all the bilge-water. The ship’s gear, the sails, steering oars, and tiller were then stored at home till the time came once more for the sailors to “stretch” their forestays.

About the year 700 B.C. the Greek warships were manned by fifty rowers; hence these craft were called pentekontoroi. With the existence of a forecastle and a raised horned poop, one can understand perfectly well how easy was the transition which caused an upper deck to be added about this century. This gave to the ship greater power, because it allowed two banks of oarsmen, one on each deck. As far as possible these rowers were covered in to avoid the attacks of the enemy. Such shallow-draught vessels as the war-galleys could not possibly be good as sailing craft. They must be looked upon as essentially rowing vessels which occasionally set canvas when cruising and a fair wind was blowing.

The pentekontoroi were single-banked, and for a long time the Greek fleets consisted solely of this type. But then came the additional deck just spoken of which gave two banks, and subsequently the trireme succeeded the bireme. The trireme was very popular till after the close of the Peloponnesian War, when the quadrireme was introduced from Carthage. Dr. Oskar Seyffert6 asserts that before the close of the fourth century B.C. quinquiremes and even six-banked craft, and (later still) even sixteen-banked vessels are supposed by some writers to have been in vogue. But as to the latter this seems highly improbable.

And before we proceed any further, let us endeavour to get a clear idea as to the nature of a trireme. This species of ship had been invented by those great seamen who hailed from the port of Sidon. About the year 700 B.C. this type was adopted by the Greeks, and then began to supersede all other existing types of war-vessels. Themistocles in 483 B.C. inaugurated the excellent practice of maintaining a large permanent navy. As a commencement he built a hundred triremes, and these were used at the battle of Salamis. In the Greek word trieres there is nothing to signify that it was necessarily three-banked, and it is well to realise this fact from the start. The word just means “triple-arranged,” neither more nor less. It is when we come to the question as to the details of this triple arrangement that we find a divergence of theory. It will, therefore, be best if we state first the prevailing theory of the trireme’s arrangement, and then pass on to give what is the more modern and the more plausible interpretation.

Cast of a Relief in Athens.

Showing the disposition of rowers in a trireme.

The most general idea, then, is that the trireme was fitted with three tiers of oarsmen. In this case the thalamitai were those who sat and worked on the lowest tier; the zugitai, those who sat on the beams; whilst the thranitai were the men who sat on the highest tier. (Homer refers to the seven-foot bench, or threnus, which was the seat of the helmsman or the rowers). Each oarsman, it is thought, sat below and slightly to the rear of the oarsman above him, so that these three sections of men formed an oblique line. This economised space and facilitated their movements. A variation of this same theory suggests that the thalamitai sat close to the vessel’s side, the zugitai who were higher up being distant from the side the breadth of one thwart, whilst the thranitai, higher still, were the breadth of two thwarts away. The oar of each rower would pass over the head of the rower below.

But a better theory of the arrangement of the trireme may be presented as follows, and it has the advantage of satisfying all the evidence found in ancient literature and pictorial representation. Banish, then, from your mind all thought of three superimposed tiers, and instead consider a galley so arranged that the rowers work side by side. Each of the triple set of oarsmen sits pulling his own separate oar. But all three oars emerge through one porthole. In front of each bench was a stretcher, and the rower stood up grasping his oar and pulled back, letting the full weight of his body fall on to the stroke till at its end he found himself sitting on the bench. On either side of him, at the same bench, was another rower doing the same exertion. In each porthole there would thus be three thole-pins to fit three oars. In this case, then, the thalamites would be he who rowed nearest the porthole. Because he worked the shortest oar and thus had the least exertion he received the least pay. Next to him sat the zugites, and next to the latter came the thranites, who worked the longest oar, and therefore did the most work, having to stand on a stool (thranos) in order to get greater exertion on to his oar at the beginning of the stroke. It is supposed that the rowers’ benches were not all in the same plane, but that the second would be higher than the first, and the third higher than the second.

The number of oars in an ancient trireme was as many as 170. These oars were necessarily very long, and time was kept sometimes by the music of a flute, or by the stroke set by the keleustes, who was on board for that purpose. This he did either with a hammer of some sort, or his voice. And there is at least one illustration showing such a man using a hammer in an oar-propelled boat for that purpose.7 The inscriptions which were unearthed some years ago, containing the inventories of the Athenian dockyards, belonging to the years between 373 B.C. and 323 B.C., have been collected and published. And it is from them that we obtain such valuable information as the number of oarsmen which the biremes carried. This number was usually 200, and was disposed in the ship as follows: There were 54 thalamitai, 54 zugitai, 62 thranitai, and 30 perineo. The exact meaning of the latter word is supercargoes or passengers, but they were carried perhaps as spare oarsmen in case any became disabled. All oars were worked together against the tholes, and as we know from the old depictions there was a space left both at bow and stern beyond the oarsmen, this space being called the parexeiresia. The number of oarsmen just mentioned may seem very large, but having regard to the speed required for manoeuvring and for ramming effectively it is not excessive. But when a war-vessel was employed on transport duty so great a host of men was not essential. In the case of a vessel engaged, for instance, in carrying horses in her hold only sixty oarsmen were needed. Had you found yourself alongside one of the war-galleys you would have been struck by its length and leanness more than by anything else. As you passed round by the bows you would have observed the two great eyes, one on either side of the hull, through which in all probability the hawsers passed. Behind these two eyes were very substantial catheads which projected like great ears from the ship, and were used primarily for slinging the anchors just as in the old-fashioned sailing ships of Nelson and after; but, secondly, for convenience when ramming. Thus, when the terrible shock came, the catheads would protect the oars of the ship from damage and allow the utmost speed to be maintained till the last minute—a factor that was naturally of the highest importance. But also they were sometimes strengthened with supports so that they might catch in the topsides of the enemy and do him considerable damage.

As to the ram, which was the pivot of all the ancient naval tactics, there was one projecting spur below, but above it was another ram to catch the attacked ship at a second place. These rams were made of bronze and had three teeth; or if not made of bronze they were of wood sheathed with that metal. The stempost in these craft rose high in the air, and each ship had a distinguishing sign consisting either of a figurehead or some relief or painting at the bows. Of the two kinds of sails which these vessels carried, the larger was put ashore prior to battle, and only the smaller one retained. And as there were two sizes of sails, so there were two sizes of masts to correspond. Besides the halyards, brailing ropes, cables, braces, sheets, and forestay already alluded to, there were also backstays to support the masts. This was up to about the year 400 B.C., but, at any rate, by 330 B.C. triremes had simply mast, yard, sail, ropes, and the loops of brailing ropes, a simplified form of the earlier brails.

Terra-cotta Vase in the form of a Trireme’s Prow.

Showing eye and both upper and lower ram, each with triple teeth.

But additional to the triremes which had been first built at Corinth, were the quadriremes which first appeared in the year 398 B.C. As to their nature, their complement, and other details we know nothing. But it is legitimate to suppose that if the triremes rowed three men to a bench these were manned by four men on each bench rowing four oars in a similar manner. In the same year that first saw the quadriremes were built also quinquiremes. As to their size and complement we know just this much—that at the battle of Ecnomus the Roman and Carthaginian quinquiremes carried about 300 rowers and 120 combatants each. Probably, like the medieval quinquiremes, they rowed five men to each oar; or, alternatively, the five men each pulled an oar through the same porthole.

Some of the later developments of the marine instinct in the Mediterranean and adjacent seas became grotesque. Personal pride and a keen sense of rivalry caused the King of Sicily and his brother sovereigns of Macedonia, Asia, and Alexandria during the fourth and third centuries B.C. to construct men-of-war on a huge scale. A temple in Cyprus commemorates the builder of a twenty- and a thirty-fold vessel. But there was even a forty-fold vessel constructed by Ptolemy Philopator about the year 220 B.C., which was the size of one of our big liners of to-day. Two hundred and eighty cubits she measured in length, thirty-eight she was wide. Her stem rose 48 cubits above the water with only a 4-cubit draught, while the stern-ornament was 53 cubits high in the air. Fitted with a double prow which had seven rams, a double stern with four steering paddles 30 cubits each in length, the largest of her oars measured 38 cubits in length, but they were nicely balanced by weighting them with an equipoise of lead near the handles. Twelve strong cables 600 cubits long girded her together, and her complement was far greater than any vessel of modern times, four thousand oarsmen, 400 sailors, 2850 soldiers, to say nothing of the retinue of servants and the stores which she carried besides. There was also an enormous Nile barge 280 cubits long, built by Sesostris, but such craft as the fore-mentioned must be looked upon less as an opportunity for practising the seaman’s art than as a vulgar display of wealth.

The true war-vessel was made in the proportions of length seven or eight times her width, and drew about 3 feet of water. Light, shallow, and flat, not particularly seaworthy, they were utterly different from the round, heavy, strong, decked merchantman. The war-galley’s triple-spiked ram had come into use as far back as 556 B.C. The galley was most certainly fast and built of fir with a keel of oak. Competent modern authorities agree in estimating the speed of the galley and merchantman in those days as about 7½ to 4 (or 5) knots respectively.

Portions of Early Mediterranean Anchor in Lead found off the Coast of Cyrene.

(In the British Museum.)

When stone was discarded and metal anchors began to be adopted about the year 600 B.C., they were made first of iron. Some idea of the weight of the holding tackle in vogue may be gathered from the statement that an anchor weighing less than 56 lbs. was used in the Athenian navy. (For the sake of comparison, it may be added that this is about the weight of a modern 10-ton yacht’s bower anchor.) Stone and lead were affixed to these anchors by iron clamps near the bottom of the shank. The ships of the Athenian navy carried each a couple of anchors, while large merchant ships carried several, as we know from the voyages of St. Paul. Cork floats were employed for buoying the anchors, as to-day, and also served the purpose of lifebuoys. Usually the ships rode to rope cables, but sometimes to chain ones. It can readily be imagined that when these light ships pitched fore and aft into a sea the two large steering oars at the high stern would be frequently out of the water, and thus quite easily the vessel would not be under command. In such instances another pair was placed at the bows. Like the modern Arabs, the early seamen of the Mediterranean had to go aloft as best they could by climbing the sail, the mast, or hanging their weight on any rope they could find.

“Curiously,” says Mr. Torr in his invaluable little book “Ancient Ships,” to which I am considerably indebted, “the practice was always to brail up half the sail when the ship was put on either tack, the other half being thereby transformed into a triangle with base extending from the middle of the yard to the leeward end of it, and apex terminating in the sheet below.” Apparently, when the yard was braced round the sail was furled on the arm that came aft, but left unfurled on the arm that went forward.

It is quite certain that the ancient Mediterranean seamen did perform voyages at night when they had attained to experience and confidence, and there is at least one plain reference in Greek literature to a lighthouse, as in the following passage: “No longer dreading the rayless night-mist, sail towards me confidently, O seafarers; for all wanderers I light my far-shining torch, memorial of the labours of the AsclepiadÆ.”8

Some of the early vase paintings show the war-galley not with a ram as developed subsequently, but a pig’s snout, and the korumba or poop extremity, shaped like a cow’s horn, could be lopped off by the victor and retained as a trophy. And in looking at these ancient galleys one must not forget that they were built not as the English shipbuilders of, say, the seventeenth and eighteenth centuries laid down ships. Galleys were built far more quickly and easily—whole fleets of them—when the first rumour of war arrived. Capable as they were of being put together with greater dispatch, launched with far greater ease, and needing many tons less material than one of the famous wooden walls which in later years were to sail the seas, it required not quite so much enterprise if the ancients desired ships, and consequently there was no small inducement for men to become expert in the things of the sea. How important was the shipbuilding industry regarded by the Mediterraneans may be seen from the careful arrangements made a long time ahead for obtaining adequate supplies of timber. About the year 380 B.C. a treaty was made between Amyntas III and the Chalkidians regulating the export and import of shipbuilding materials; for it must not be forgotten that southern Makedon, the Chalkidic peninsula, and Amphipolis were the chief sources whence Athens derived its xula naupegesima—ship-timber—for her dockyards. This record is found in a marble which was discovered at Olynthos, and is now at Vienna.

At Corinth and other places there were all the accessories of a shipbuilding yard on a big scale, including proper slips, and even ship-tramways running down to the sea for hauling ships ashore. At such yards long, narrow rowing galleys and round, broad sailing merchant ships were put together with all the skill which the Greeks possessed. Here hulls were built out of pine, cedar, and cypress, while the interiors were constructed of pine, lime, plane, elm, ash, acacia, or mulberry. Here we could have watched the masts and yards being fashioned out of fir or pine, whilst others were busy caulking seams with tow, or heating the wax and tar over the cauldrons.

But the picture of the ancient Greek shipbuilding activity is far from complete owing to the comparatively scant material which exists. In 1834, when the workmen were digging the foundations for a building at the PirÆus, they came upon a Roman or Byzantine drain, and discovered it to be lined with slabs of marble which were covered with inscriptions. These were some of the inventories of the Athenian dockyards of the fourth century B.C., and will be found published in August BÖckh’s “Corpus Inscriptionum Atticarum,” Vol. II, Part II, p. 158.

In any consideration of the Greek seamen we must think of them as existing almost exclusively for one purpose—not for trading or exploring or fishing, but for fighting. Into the latter was poured practically all their seafaring energy. Their general naval strategy consisted of two kinds. The first consisted in reproducing afloat the principles of fighting on shore. To this end the galleys were massed with troops as many as they could hold, and so soon as the engaging combatants could get close enough they attacked each other with spears and shot arrows from their bows. The victory therefore came to that floating army which had the most numerous and ablest soldiers. Brute force rather than tactics: energy rather than skill won the day.

And thus it continued until about the end of the fifth century B.C., when another method of fighting was introduced and developed by the Athenians to its most perfect state. This consisted as follows: The well-manned, quickly-darting galley shot out against the enemy, pecked deeply—viciously—with its beak, and then hurried out of the danger sphere as quickly as it had entered. Connected with the general strategy of ramming there were two distinct schemes of tactics employed. The first was called diekplous, or sailing through. This consisted of breaking the enemy’s line. A single line of galleys would pass between the enemy’s line, make a sharp turn, and then swoop down on to them from astern, doing the utmost damage with their rams. The other was technically known as periplous, or sailing around, and consisted in outflanking the enemy’s ships so as to charge them with the beak against their broadside. Thus it will be seen that neither of these manoeuvres involved a direct prow-to-prow attack, for the reason that the Athenian ships were too light as to the bows. Prior to a fight protective awnings of sailcloth or horsehair were spread over the open spaces on these galleys, and every protection that could be afforded the essential oarsmen was provided. Everything points to the fact that the Greek fleets were properly organised and drilled. An admiral’s ship was distinguished by a flag as well as any purple or vermilion sail which she might carry so as most easily to be discernible across the waters. When the fleet was at sea doing a passage before a fair wind bound for the battle area, the admiral’s sail would in itself be sufficient for a sign. But, as already emphasised, sails were lowered before the battle commenced, and it is probable that either the flag was displayed somewhere about the ship in that case, or that some other method, such as the colour of the hull, was employed to cause the discrimination. It is probable that the Greek admiral’s ship at night, like that of the Roman admiral, carried three lights, the other warships having one light each, except the transports, which were distinguished by two.

Shield Signalling.

In battle a national flag was used so as to facilitate recognition of one’s own vessels from those of the enemy. And, as illustrative of the development of the early naval tactics, it is well to notice that there existed a signalling code—the displaying of a purple flag, for instance, being the signal for going into action. Mr. Torr mentions the interesting fact that attempts were made at semaphoring with a single flag, and further at signalling by flashing the sunlight from a shield. In addition to the above, signals were made for getting under way, for altering the formation of the fleet, for bringing-to, as well as for disembarking troops.

Their seamanship was necessarily simple, because their ships had no complicated gear and were primarily rowing craft. We know that they used the sounding lead armed with grease, and the numerous landmarks of the Ægean Sea and the neighbouring waters would be more than well known to those in command of the ships sailing. When one thinks of the bare simplicity of the Mediterranean galley, the fighting ship of Tudor times with all its sails and rigging and running gear points to a far more elaborate species of seamanship with a corresponding increase of anxiety. As to the division in supervising the ship’s work, the officers consisted as follows: The captain of the trireme—called trierarchos—was in supreme command of his ship. Under him came the kubernetes or helmsman. Then forward stood the officer in command of the bow—the proreus or look-out man. Under these three officers the ship was manoeuvred in such a manner that either the enemy’s hull might be pierced or, at any rate, his protruding lines of oars smashed into splinters, thus rendering him an easy prey.

For the most part the representations of ancient classical ships have been so carefully made that they have every appearance of accuracy, taking into consideration the possibilities of wind, sails, and sea, but occasionally mistakes are made which show that the artist certainly was not a seaman. In the accompanying illustration9 we have an instructive picture of a penteconter. She sets two sails with a bowline shown on the mizzen, but interesting as the picture is in many ways, yet the sails are clearly not set in accordance with the wind. The steering oar at the side and the flag on the staff at the bows will be immediately noticed.

Greek Penteconter from an Ancient Vase.

That the artist was not a seaman is obvious from the ludicrous way in which the sails are depicted.

To sum up, then, the Greek seamen evolved their ships as follows: Like the Egyptians and Phoenicians before them, they began with a penteconter, which means that each man pulled an oar and that there was but one tier of twenty-five on either side of the ship. Next, inasmuch as they wanted increased power and speed—possibly because the ships were being built more strongly and thus needed more vehemently to be rammed—so they had to increase the number of their oarsmen and to lengthen their ship. This involved a risk of hogging, so the hull was engirdled; or when that was dispensed with a deck was added to join forecastle and poop, and gave facilities for a second tier of rowers. In the next step we get the introduction of triremes, quadriremes, and quinquiremes, which multiplied the number of men rowing from each bench, but placed all the men on one bench pulling their oars through the same porthole. After this come the monstrosities of the powerful Egyptian, Sicilian, and other kings, in whose ships each oar was probably pulled by any number of men from six to forty. But luxury certainly came afloat at no late date. Professor Flinders Petrie calls attention10 to the extraordinary analogy between the work of the MykenÆans and that of the Egyptians in the grandly embroidered squaresails painted in the frescoes at MykenÆ. Certainly as far back as 232 B.C. there were mosaics to be seen on the magnificent ship of Hiero II of Syracuse.11

Not less interesting were the ships and ways of ancient Rhodes, which in like manner had its dieres, trieres, tetreres, penteres, even up to seven- and nine-fold ships. In addition to these they had a swift type of their own invention, having one bank of oars, called celoces. They were wont, also, to use another fast type of craft called triemioliÆ, which had no fighting deck stretching from end to end. The usual Rhodian naval tactics consisted in endeavouring to run through the enemy’s line and break the oars of his ships as they passed. Afterwards the Rhodians would then turn and ram them at the stern or else on the beam, always carrying away something that was essential for working the ship unless they could sink her forthwith.

They were very fond of one device in particular. When they were positively compelled to ram stem to stem they used to make provision by depressing their own bows as deep as possible in the water, so that while the enemy’s ram struck them high above the water-line, the Rhodian teeth holed the other ship well below the water. After the impact was over and the two ships fell apart the enemy was in a sinking condition, whereas the Rhodian could, by removing his ballast and some of his men aft, elevate his bows well above the water-line. But just as was discovered in modern ironclads fitted with rams, it was found that the rammer often came off as grievously as the rammed. At the battle of Chios in 201 B.C. one galley left her ram in the enemy’s ship, promptly filled and sank. At the battle of Myonnesos in 190 B.C., when a Rhodian ship was ramming an enemy the anchor of the former caught in the latter. The Rhodian ship endeavoured to go astern to clear herself, but as she did so the cable got foul of her oars so that she was incapacitated and captured. During this same battle the Rhodians affixed braziers of fire which hung over the bows. In trying to avoid these, the Syrian ships exposed their broadsides to the Rhodian rams, so that it became a choice of two evils.

The Rhodians were fine, able seamen, and well they needed to be. But even with the smart handling of their fast little craft they had all their work cut out to keep off the embarrassing attentions of the Cretan pirates during the second century B.C. On the biggest of their galleys the Rhodians erected deckhouses with portholes for their powerful catapults and archers. The custom of employing fireships, which remained in vogue for many centuries down to the time of the Armada and after, was already being employed by about the year 300 B.C. The Rhodians, too, had their proper organisation in naval matters as distinct from any desultory measures. In the port of Rhodes they had their dockyards, which were kept up at a great cost. And there is something curiously modern in the stringent regulations kept for preserving the dockyard secrets. Any unauthorised person who intruded into certain parts thereof was punished with death. And this strict rule was not peculiar to Rhodes, but obtained at Carthage and elsewhere. In order to protect their harbours against the assaults of the enemy, booms were laid across the entrances, and engines were mounted on merchant ships moored near the harbour-mouth.

The Rhodians were great shipbuilders, and in their sheds was kept many a craft ready to put to sea. But as Britain to-day builds warships for nations other than herself, so it was with Rhodes, and to this end she used to have brought to her immense quantities of timber, iron, lead, pitch, tar, resin, hemp, hair (for caulking), and sailcloth. Even human hair was employed in the service of the ship, and at the time of need the ladies of Rhodes, Carthage, and Massilia cut off their tresses and yielded it up for the making of ropes. The Rhodian squadrons were usually of three ships or multiples of three, and every year a squadron went forth for its sea experiences. The trieres, which carried as many as two hundred men, each voyaged as far as the Atlantic. Fine swimmers, fine seamen, their sea prowess was the cause of the greatest admiration on the part of the Greeks. “It was a proverb,” says Mr. Torr in his “Rhodes in Ancient Times,”12 “that ten Rhodians were worth ten ships,” and we must attribute their natural instinct and acquired skill for marine matters to that fortunate accident of being an island nation—a circumstance which has always, in all parts of the globe, meant so much to the progress and independence of a nation. Furthermore, the port of Rhodes was an important point on the line of commerce, and this fact also must be taken into account in reckoning up the influences at work for encouraging the marine arts, especially in inculcating an interest and admiration for the things of the sea. For those great merchant ships which used to sail to Egypt and come back to Greece laden with corn were accustomed to make Rhodes their port of call, and we cannot doubt that the sojourn of these big vessels with their impressive bulk and remarkable spars would make a powerful appeal to the imagination of the local sailormen and shipwrights always on the look-out for new ideas. Then, too, they had their own overseas trade, for large quantities of wine were exported from Rhodes to both Egypt and Sicily. Even by the third century B.C. the Rhodians were strong both as a naval and commercial nation. Their maritime laws were so excellent that they were afterwards adopted by Rome, and even to-day much of the world’s best sea law can be traced back to the people of that Mediterranean island.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page