Geological Department, W William Smith, the Father of English Geology, used to apologize for the study of palaeontology by claiming that “the search for a fossil is at least as rational a proceeding as the pursuit of a hare.” Those of us who are accustomed to take the field, armed with a hammer, in the search for “medals of creation” and from time to time have experienced the sporting enjoyment of bringing to light a rare or perfect specimen are quite prepared to support his claim. But the student of fossils needs the help of a text book to guide him to the literature on the subject, to help him with his identifications or to indicate that some of his finds are new and hitherto undescribed. European and American workers have long been provided with excellent books treating generally of fossils, but the illustrations have been quite naturally taken mainly from forms occurring in the Northern Hemisphere. Our own fossil forms both plants and animals are numerous, interesting and in many cases peculiar, but the literature concerning them is so widely scattered in various In the study of fossils we are concerned with the nature, evolution and distribution of the former inhabitants of the earth. The study of Palaeontology may be justified as a means of scientific discipline, for the contributions the subject makes to the increase of natural knowledge and the unfolding of panoramas of ancient life. It also provides perhaps the most positive evidence in the story of evolution. So, too, the student of the present day distribution of animals and plants finds the key to many a problem in zoo-geography in the records of past migrations yielded by the study of fossils in different lands. The stratigraphical geologist is of course principally concerned with two important aspects of the study of fossils. The masterly generalisation of William Smith that strata can be identified by their fossil contents established by close study of the rocks and fossils of the British Oolites has been confirmed generally by subsequent work. The comparative study of the fossil contents of rocks in widely separated areas has proved to be the most valuable means by which the Generally, however, much closer study and a more detailed examination of a large number of the fossils of a rock series are required before the age of the rocks can be surely established and a safe correlation made with distant localities. The stratigraphical generalisations to be made from the study of fossils however must be qualified by certain considerations. Among these are the fact that our knowledge of the life forms of a given geological period is necessarily incomplete, that the differences in the fossil contents of rocks may depend not only on differences of age but also in the conditions under which the organisms lived and the rocks were accumulated, and that forms of life originating in one area do not spread themselves immediately over the earth but migrate at velocities depending on their mode of life and the presence or absence of barriers to their progress. Our incomplete knowledge of the forms living in remote geological periods arises partly from the fact The study of the present distribution of animals and plants over the earth is a help in the attempt to decide how far the fossil differences in the sets of rocks are due to differences in the ages of the rocks or to differences in the conditions under which the organisms lived. The present, in this, as in many other geological problems, is the key to the past. We know, for instance, that differences of climate largely control the geographical distribution of land animals and especially of land plants, and for that reason among others, fossil plants are generally less trustworthy guides to geological age than fossil animals. In the distribution of marine animals at the present day we find that organisms of simple structure are generally more wide-spread and less susceptible to changes in their environment than are the more complex organisms with specialised structures. Hence we find, for instance, a fossil species of the Attention should also be paid to the conditions under which the deposits accumulated, since it is clear that rocks may be formed at the same time in different areas and yet contain many distinct fossils by reason of climatic or bathymetrical differences. Among living marine organisms we find certain forms restricted to sandy or muddy sea-bottoms and others This could only be true if the time taken for the migration of faunas and floras was so great as to transcend the boundaries between great geological periods. This does not appear to be the case, and Huxley’s idea in its extreme form has been generally abandoned. At the same time certain anomalies in the range in time of individual genera have been noted, and may possibly be explained on such lines. For instance, among the group of the graptolites, in Britain the genus Bryograptus occurs only in the Upper Cambrian and the genus Leptograptus only in the Upper Ordovician rocks. In Victoria these two genera, together with typical Lower Ordovician forms, may be found near Lancefield preserved on a single slab of shale. In the same way, in a single quarry in Triassic rocks in New South Wales, a number of fossil fish have been found and described, some of which have been compared to Jurassic, others to Permian, and others to Carboniferous forms in the Northern Hemisphere. Another point which the palaeontologist may occasionally find evidence for is the existence of “biological asylums,” areas which by means of land or other barriers may be for a long period separated from the main stream of evolution. We know that The broad generalizations that rocks may be identified by their fossil contents and that the testimony of the rocks demonstrates the general order of evolution from simple to complex forms, have only been placed on a surer footing by long continued investigations. The modifications produced by conditions of deposit, of climate and of natural barriers to migration, while introducing complexities into the problems of Palaeontology, are every year becoming better known; and when considered in connection with the variations in the characters of the rocks, provide valuable and interesting evidence towards the solution of the ultimate problems of geology and palaeontology, which include the tracing out of the evolution of the history of the earth from the most remote geological period to that point at which the geologist hands over his story to the archaeologist, the historian, and the geographer. ERNEST W. SKEATS. |