On the Glacial Succession in Europe. By Prof. James Geikie. Transactions of the Royal Society of Edinburgh, Vol. XXXVII., Part I. (No. 9), 1892, pp. 127-149 (with a map). In this timely essay Prof. Geikie reaches the following conclusions: 1. The record of the first glacial epoch is found in the Weyborn Crag of Britain, and the ground moraine beneath the "Lower Diluvium" of the continent. During this epoch, the direction of the ice movement in southern Sweden was from the south-east to the northwest. This first glacial epoch of which direct evidence is adduced was followed by an interglacial interval, during which the forest-bed of Cromer, the breccia of HÖtting, the lignites of Leffe and Pianico, and certain beds in central France were deposited. During this interglacial epoch, the climate is believed to have been very mild. 2. There followed a second epoch of glaciation, when the ice sheet of Britain became confluent with that of the continent. This was the epoch during which the ice sheet reached its southernmost extension. Its depositions are found in the lower boulder clays of Britain, the lower diluvium of Scandinavia and north Germany (in part), the lower glacial deposits of south Germany and central Russia, the ground moraines and high level gravel terraces of Alpine lands, and the terminal moraines of the outer zone. During this second glacial epoch, Alpine glaciers are believed to have attained their greatest development. This epoch of extreme glaciation was followed by an interglacial interval, during which Britain is believed to have been joined to the continent. During this interval, the climate became temperate. In Russia (near Moscow) there seems to be evidence that it was milder and more humid than that of the same region at the present day. Toward the close of the mild epoch, submergence seems to have been accompanied by an increasing degree of cold, which finally ended in another glacial epoch. 3. The subsidence which marked the close of the second interglacial interval, marked likewise the inauguration of the third glacial 4. There followed a fourth period of glaciation, during which the major part of the Scottish Highland was covered by an ice sheet. Local ice sheets existed in the southern uplands of Scotland and in mountain districts in other parts of Britain, and the great valley glaciers sometimes coalesced on the low lands. Icebergs floated out at the mouths of some of the highland sea-lochs. In some places, terminal moraines were deposited upon marine beds which were then in process of formation. These beds are now 100 ft. above the sea level. At this time Scandinavia was covered by a great ice sheet, which yielded icebergs to the sea along the whole west coast of Norway. The ground moraines and terminal moraines of the mountain regions of Britain represent the deposits of this ice epoch. The upper diluvium of Scandinavia, Finland, and north Germany represent the work of the contemporaneous, but not confluent, ice sheet of the continent. In the Alps, terminal moraines in the large longitudinal valleys were made at the same time. This fourth glacial epoch was followed by a fourth interglacial interval, during which fresh water alluvial deposits were made, and also the "lower buried forest and peat" of Britain and northwestern Europe. At this time, Scotland seems to have stood 45 to 50 feet lower than now, and Carse clays and raised beaches represent the work of the sea. During this interglacial interval, Britain is 5. The severity of the climate which marked the close of the fourth interglacial interval was such as to bring about local glaciation in some of the mountain valleys of Britain. Here and there the glaciers projected their moraines so far down the mountains that they rest on what is now the 45 to 50 feet beach. In the Alps, this fifth epoch of glaciation is represented by the so-called post-glacial moraines in the upper valleys. This is believed to have been the last appearance of glaciers in Britain. The dissolution of these glaciers was again followed by an emergence of the island, and by more genial climatic conditions. In support of his conclusions, Prof. Geikie cites some striking facts which are not so widely known as they should be. For example, Swedish geologists have found evidences that there was an ice sheet antedating that which deposited the "lower diluvium," and that during this earlier glaciation the direction of ice movement in southern Sweden was from the south-east to the north-west. The ground moraine deposited by this ice sheet is overlain by the "lower diluvium" which was produced by an ice movement from the north north-east to the south south-west, or nearly at right angles to the first. Again, near Moscow, there exist interglacial beds whose plant remains indicate a climate milder and more humid than that of the present time. These interglacial beds, it will be observed, occur in the region of the "lower diluvium" quite beyond the margin of the ice which produced the "upper diluvium" of Germany and Scandinavia. During this interglacial interval, Prof. Geikie maintains that no part of Russia could have been covered with ice. If, then, within the limits of the area covered by the "lower diluvium," and not by the "upper," distinct beds of glacial drift are separated by such beds as those cited, there can be no question but that such separation marks two distinct glacial epochs. If there was an earlier glaciation when the movement of the ice in Sweden was at right angles to that during which the lower part of the "lower diluvium" was produced, this also would seem to be good evidence of three ice epochs prior to the "upper diluvium." The epoch of the "upper diluvium" would then constitute the fourth glacial epoch, and this is the interpretation of Prof. Geikie. Outside the area of the European continental ice sheet, facts are adduced in striking confirmation of the multiple ice epoch theory. These facts are found in Switzerland, where evidences of multiple glaciation have been recognized, and in the Pyrenees where evidences of three separate ice epochs have been found. In France, evidences of an interglacial interval have been found in the region of the Puy de DÔme of such duration as to allow the excavation of valleys to a depth of 900 feet. The length of time which would be required for such stupendous erosion must certainly be regarded as sufficient to allow the preceding and succeeding glaciations to be considered as belonging to two distinct epochs. Another point of great significance and interest which Prof. Geikie's essay brings out, is the correlation in Britain between epochs of glaciation and epochs of subsidence on the one hand, and between interglacial intervals and epochs of elevation on the other. If Prof. Geikie's interpretation be well founded, and so far as we are able to judge from the facts presented this is the case, his conclusions would seem to be fatal to the hypothesis that glacial climate was produced by northern elevation. The map which Prof. Geikie gives, showing the limit of ice advance during the fourth glacial epoch, seems to us open to criticism. On the ground of personal observation, the writer believes that the ice sheet of the glacial epoch here represented did not extend notably, if at all, beyond the Baltic Ridge. Prof. Geikie is an advocate of Dr. Croll's astronomical theory of glacial climate, and thinks that even five is not the full number of glacial epochs belonging to the Pleistocene period. He believes there may have been a series of glacial epochs increasing in severity to a maximum represented by what is now designated as the second glacial epoch. This maximum was followed by a series of epochs of diminishing severity, represented by what he designates the third, fourth and fifth epochs. The essay is a timely contribution to glacial geology. Rollin D. Salisbury. |