The Cost of an Ocean Racer—Intricate “Financing” of Such an Undertaking—The Contract with the Ship-builders—The Uncertain Element in Designing—Great Ship Yards along the Clyde—The Plans of a Steamer on Paper—Enlargement of Plans in the “Mould Loft”—What is Meant by “Fairing the Ship”—The “Scrive Board”—Laying down the Keel—Making the Huge Ribs—When a Ship is “in Frame”—Shaping and Trimming the Plates—Riveting and Caulking—Ready for Launching—The Great “Plant” which is Necessary for the Building of a Ship—Description of a Typical Yard—Works Covering Seventy-Four Acres—Where the Shaft is Forged—The Lathes at Work—The Adjustment of Parts—Seven Thousand Workmen. I.AS often as the “record is broken,” and the Atlantic voyage is reduced by some unprecedentedly fast passage, we may be sure that there is a flutter in the offices of the rival lines which have thus been left behind. Between the Cunard, the Guion, the Inman, and the White Star lines there has been a constant race for supremacy, now one, and then the other, taking the first place. No ship has been allowed to keep the lead for more than a year or two. When sixteen knots have been developed by one line, seventeen knots have been aimed at by another, and the ship of that speed is no longer a wonder. So when we read in the newspapers of the “fastest passage” we may take it for granted that it is no sooner heard of in Liverpool than the managers of the lines momentarily surpassed are preparing to beat it. If the triumph belongs to the Cunard line, at the very next meeting of the directors of the White An order for a new ship of the class required to compete in the modern passenger service of the Atlantic is not by any means a matter to be determined on without grave consideration. Speed is costly, and as you increase it it is generally necessary to also increase the tonnage. Thus if the problem before you is to beat the record of a seven-thousand-ton ship, which has developed eighteen knots with engines of twelve thousand five hundred horse-power, you must (principally for economic reasons) have a larger hull as well as more powerful engines for your competing vessel. This forces upon your consideration tides, channels, harbor-bars, and dock accommodations, all of which impose limitations upon you. And then the cost of the ship herself is not a matter which even the wealthiest of corporations can provide for at a moment’s notice: it is not one hundred thousand dollars, or five hundred thousand dollars that the work calls for, but about five times the latter sum, for it is safe to say that a vessel superior to the City of New York or the Etruria could not be built for less than two million and a half of dollars. The “financing” of such an undertaking requires time: there are long consultations between the directors, bankers, and ship-builders. If we could follow the steps of the gentleman to whom these negotiations are intrusted, we might see him flying off from Liverpool for Euston: closeted in a private office down in Lombard Street or Cornhill with some capitalists who are expected to contribute to the necessary funds; again, after dinner, engaged in argument with these same capitalists in a West End mansion to which they have adjourned, and then racing off in the precarious hansom cab to catch the night train from King’s Cross for Glasgow. Sometimes the ship-builders are willing to become part owners of the projected vessel; sometimes they take as part payment for the work some older vessels of the line, which they refit, re-engine, modernize, and sell again. The ability of the builders to make an arrangement of this kind, of course, influences the placing of the Now, ship-building is not an exact science, and the closest calculations are often upset in the result by unforeseen and inexplicable causes. It can never be said with absolute certainty just what speed a ship will attain, or exactly what quantity of cargo she will carry. The most ingenious and patient of experiments have not yet succeeded in eliminating the mysterious variability of result which the ship-builder finds, however closely he repeats his well-defined formulas. Two ships, like the Umbria and the Etruria, may be built side by side, of identical materials, lines, and dimensions; engines, boilers, and propellers may be the same, yet one will turn out to be a knot or two faster than the other, and neither the designer nor the builder is able to say why. It is apparent, then, that in guaranteeing an exceptionally high rate of speed the builder assumes no little risk. The designing of a fast ship is indeed more of an art than a science, and each designer proceeds on a theory more or less his own. If the reader has an The Umbria just before Launching. We will suppose, however, that the designer sees his way to build such a ship as the specifications submitted to him call for, and that the contract is awarded to him, or to the firm he represents. The ship is now tentatively on paper, though her essential features are well defined, and the next step takes us to Glasgow and the Clyde. II.If in crossing the Atlantic for the first time you choose Glasgow for your port of disembarkation, the sail up the Firth of the Clyde and the river is likely to be full of agreeable and memorable surprises. The beauties of that route are not advertised, and one hears so little of them in advance that they gain impressiveness from the absence of expectation. The Firth itself is like a great Fjord, a land-locked bay hollowed between hills and crags, among which vapory clouds are always shifting, and its deep salt waters are ploughed by fleets of vessels of every class, and especially by yachts, sea-going steamers, and the most rakish-looking excursion boats in the world; it is not unlike the Hudson above Peekskill, though much wider; the rounded hills have the same soft and civilized outlines, and the same appearance of reclamation for man’s use and delectation; modern villas crown their heights and watering-places cluster at their feet. Just below Greenock the passage narrows, and above that we enter the river, which, though not beautiful, is more of a surprise than even the Firth. It meanders through fields, and from the towering deck upon which we stand we look down upon ploughmen at work, cattle grazing, and snug farm-houses. So narrow is the stream, and so low are the banks, that the big steamer seems curiously out of place. How, one asks, has Glasgow ever prospered with so small a river as its only outlet to the sea? We have thought of the Clyde as a wide and capacious stream like the Mersey opposite Birkenhead, or the Hudson opposite New York; but, instead, it is scarcely as wide as the East River at Brooklyn, and there are reaches where two large vessels have no room to spare in passing each other. Such as it is, all sorts of dredging operations are necessary to keep it open, and it has been said to be as much an artificial channel as the Suez Canal. The first steamboat to navigate it was the Comet, in 1812, and though she drew but four feet of water she could leave Glasgow only on the flood tide. Even then she sometimes ran aground, and her passengers had to wade or swim ashore, or wait twelve hours for the next tide. Its depth is ample now, however, and it is the breadth that astonishes us: it seems as though a venturesome jumper might easily spring from the deck to either bank. The farms are alternated by shipyards in which the hulls of ships in various stages of construction loom up, with ant-like specks of humanity swarming upon them. Some of them are nearly twice as long as the river is wide, and it puzzles the stranger to say how they can be launched, until someone, wiser than he is, tells him that they slide into the stream obliquely and thus overcome the difficulty. Nearly all the steamers that have earned fame in the Atlantic trade have been built and engined at one or the other of these ship-yards, from the first Cunarder to the City of Paris; the Cunard, Inman, Guion, and North German Lloyd lines have come to this little river for their ships. And as we approach Glasgow, burrowing into the dark that envelops the town, it becomes narrower still, and within the limits of the port is nothing more than a long canal with ships huddled together along the banks. The Clyde is, in fact, like one of those heroic personages who triumph over natural disadvantages which to the common mind are insuperable, and its inferiority in depth and breadth has been counterbalanced by excellences in other directions. In the first place Glasgow is the natural outlet of a great mineral field, so that after iron and steel became the principal materials of the ship-builder, he could find them on the banks of the little river unburdened by the increased price asked for them when it has been necessary to carry them long distances. In the second place the Clyde was the scene of the earliest attempts at steam navigation in Great Britain, by Miller, Symington, and Bell, and descending from them the genius of ship-building has become hereditary with the inhabitants of the town. “Practice makes perfect,” and the ship-builders of Glasgow III.We have assumed the work of the naval architect to be complete; all the specifications have been made out, and every part of the prospective ship has been drawn on paper. There are three plans: a “sheer plan,” showing all lines of length and height from stem to stern; a “half-breadth plan,” showing the lines of length and breadth, or, in other words, those lines which would be visible in looking down upon her decks from an elevation; and a “body plan,” which shows all lines of breadth and height, and represents the ship looked at “end on.” These are called the “construction drawings,” and with them in his hand the ship-builder can see in his mind’s eyes the vessel as she will appear when built. He does not work directly from these, however. They are carried up into the “mould loft,” the floor of which represents an enormous blackboard, and upon this they are reproduced to correspond with the exact dimensions of the ship. A foot is scaled down on the paper to a quarter of an inch, but in the mould loft a foot is a foot, and plate, girder, and rib are drawn to their full size. This enlargement leads to the detection of errors which are not apparent in the reduced drawings, and which must be eliminated. Straight lines are made with chalk by cords and rules, and curves by bending laths into the desired position and then tracing the sweep upon the floor. Every measurement General View of the Frames of the City of New York—June 25, 1887. The keel is laid down on blocks, four or five feet apart, which form a slope toward the water, so that the hull may glide down easily when the time for launching comes. It is not a keel at all, in the sense in which the word was formerly used: a modern ship has a smooth bottom, without any projecting ridge or break to the curve of her sides; it is simply the central series of plates, from which an inner keel is built up like an enormous backbone, and to this the ribs are attached. The metal is delivered at the yard in the shape of angle iron or angle steel, the latter being the material which would be used in a ship of the class we have in mind. Heated to a white heat, the angle-bars are drawn out of the furnace into a perfectly level iron floor, upon which they are bent to the needed curve, and that which has been a line of ink in the original drawing, a chalk mark on the floor of the mould loft, and a groove in the surface of the “scrive board,” is now embodied in the heavy rib of the ship. The bending is done thus: the metal floor is perforated with thousands of holes, into which iron pegs are inserted until they form the curvature required, and the long, pliable bar of steel is pressed against them until it corresponds exactly with the line exhibited in the “scrive board,” which is always in sight of the workmen for guidance and comparison. In handling the metal the men use pitchforks, and with the prongs inserted in the holes they get purchase enough to make the bar yield; if it bends upward a hammer is used upon it. Each rib has, of course, to be duplicated with the utmost precision, in order that it shall be the same on both sides of the ship, and each, after it has cooled, is laid upon the “scrive board” and compared with the lines thereon, every variation being corrected before Two or three months or less after the completion of the “fairing,” the ship is probably “in frame,” and looks like the skeleton of some Brobdignagian monster that has stranded on the bank of the river. The ribs have been hoisted into position at right angles with the keel, and strung together by “rib-bands,” and already there are signs of the coming subdivision by decks and bulkheads of the hollow space within. You can still see through her, however; she is like, to make yet another comparison, a great oblong wicker-basket, the supple willows being represented by the net-work of steel. The next step is the clothing of the ribs with plates. As they reach the yard the plates are square and flat, but they are passed through rollers of various kinds, from which they issue in any shape desired—hollowed like a spoon, curved lengthwise or breadthwise or diagonally, as the contour of the ship may call for. A steam or hydraulic plane smooths them down as though they were the softest of whitewood; another machine trims the edges as easily as a woman cuts silk with a pair of scissors. Then, suspended by iron chains, they are thrust between the jaws of a punching machine, which has a resemblance to a sinister human face with a flat nose, a long upper lip, and a small chin. The jaws close upon them and bite out, ten at a time, the holes for the rivets by which they are to be fastened to the frame. As they are hoisted up to the workmen, each fits the exact place designed for it and takes its part in the softly swelling lines of the ship. They are put on in rows, or, as rows are technically called in this connection, “strakes,” which are lettered alphabetically, A being the row riveted to the keel. The upper edge of A overlaps the lower edge of B, and the lower edge of C overlaps the upper edge of B, and thus while one row of plates like B has both edges hidden, the row above it has both edges exposed, which minimizes resistance to the progress of the ship. We all know what caulking a wooden Frames of the City of New York, looking aft—July 19, 1887. First held in place by bolts and nuts, the plates are finally secured by the rivets, the holes for which have previously been countersunk by machinery, so that there are no protuberances. The rivets go right through, and have double heads: millions of them are used, and every one of them is examined and checked before the work is passed as satisfactory. Frames of the City of New York, looking forward—July 19, 1887. At last the hull is closed in, and hundreds of artisans toil upon it, inside and out. At the end of a year, perhaps, the ship is ready for launching, by which time, if she is of the same dimensions as the City of New York or the City of Paris, seven thousand tons of material have been placed in position, one casting alone—the sternpost—weighing twenty-six tons. She is a steel ship, but in addition to Nothing is more wonderful than the launching of such a vessel. Imminent peril seems to attend the operation; she must topple over, thinks the uninitiated observer, or if she succeeds in reaching the water, she must plunge against the opposite bank of the narrow river. But at the appointed time she glides into the water as smoothly as an eel, and once afloat she is held in check by cables attached to the shore. Her engines have got to be put on board, and fully six months more elapse before she is ready for sea. If she is complete within two years of the day the contract for her was awarded, her builders have done well. Let us now look at the “plant” which is necessary for building such a ship, and to see this in perfection we will visit Fairfield, which divides honors with the great ship-yard of Messrs. James & George Thomson, at Clydebank. IV.A wonderful place is Fairfield. When a ship is taken in hand for construction the design for each and every part is proceeded with simultaneously. It is not the keel first, then the frames, then the reverse frames, then the flooring, and so on, as it is in smaller ship-yards. Keel, frames, flooring are put in hand together, and the hull plates are ready before the keel is in position. Simultaneously, too, the sawmill is preparing the planks which are to cover the steel decks: the joiners are at work on the saloon and cabins; the upholsterers are cutting and stitching the brocades, plushes, and silks which are so freely used in modern ocean steamers; the chain-maker is forging the cables, and each department is busying itself with its own share, conscious that what it produces will presently be sought to take its place in the rapidly progressing whole. How rapid the progress is may be judged from the fact that on August 14, 1885, the steel intended for a North German Lloyd steamer began to enter the yard, and exactly one month later the ship was in frame with keelsons and beams in position, and the plating for the hull, rolled to waterline shape, lying alongside. The works cover nearly seventy-four acres, and lie on the south side of the Clyde, about three miles from Glasgow, with which city they are connected by a continuous chain of docks, warehouses, and other ship-yards. Not very long ago this great inclosure was arable land attached to a comfortable mansion which still retains a few vestiges of its former dignity. But now the verdure has been trampled down and the face of the earth is hidden by paving-stones and iron rails. The river is inky, and the smoke lying in a brown fog over-head is ever being replenished from the high chimneys of the neighborhood. The scene within the high brick walls which keep out idlers is exhilarating but scarcely picturesque. All the materials which enter into the construction of a modern ship are visible in profusion. A bird’s-eye view reveals great stacks of timber, iron, and steel; a net-work of rails which connect the works with all the principal lines converging at Glasgow; long brick sheds, and edging the water-front the launching-slips, where as many as fifteen vessels have been in course of construction at the same time. There the great hulls of many of the most famous Atlantic liners have been put together; this was the birthplace of all the new ships of the North German Lloyd line; of the Arizona, the Alaska, the Oregon, the Umbria, and the Etruria. Running at right angles from the river, a dock has been excavated, large enough to accommodate a vessel of twelve thousand tons, and after launching, the steamers are hauled in here to receive their engines and boilers. Immediately in the rear of the launching-slips there is an enormous shed, with a roof of glass and iron, where all the iron-work for the hulls of fifteen ships has been handled at one time. Within it gangs of workmen, each skilled in a The Manganese Bronze Propeller-Blade of the Wrecked Steamer Mosel, after it had beaten upon a reef. There is a special department for the casting of manganese bronze, which is used for the blades of propellers. Standing against a wall not far off is a blade saved from the propeller of the wrecked steamer Mosel. She ran ashore on a rocky coast, and her propeller played upon the reef like a flail upon a threshing-floor without break or fracture; so great is the strength of the bronze that the only effect upon it was a feathering of the edges as revealed by the blade in question. Then we see the engineering, forge, and pattern shops. Forgings of steel are made which weigh as much as thirty tons, as in the case of the crank-shafts of the new North German Lloyd steamers. A shafting of that weight is lifted as easily, and with as little commotion, as a bar of angle iron, and placed on a table to be finished. All the tools are of enormous size, and nearly all of them are adaptations of the well-known turning-lathe. Either the tool turns or the work turns. A steamer’s cylinders are bored out with a bar, the bar moving. In turning a thrust-shaft the shaft moves, not the tool. In facing a condenser the tool moves, not the condenser. Cutting, planing, and turning are all accomplished by modifications of the lathe. There are in all nearly forty lathes, vertical, horizontal, and Let the reader figure to himself the gleaming tools, the whirring machinery for the distribution of power, the begrimed toilers, the ponderous masses of iron and steel—now swinging in mid-air, then clutched to the breast of an excoriating monster like the “devil;” let his eye rest on those forty lathes all busy at once, eating with unwearying jaws into the metal fed them, and on the plane which shaves an armor-plate as if it were a deal board; then let him fill his ears with the groaning, creaking, hissing, grinding, shrieking of all this activity, and add to it the battle-like din of the boiler-makers. Thus he may know what Fairfield is like. Ranging up and down these work-shops, and pausing before this or that lathe, we see in undistinguishable fragments the engines that are designed to propel the seven or eight thousand-ton ship; then the pieces are gathered together and united in a pit; power is applied from an auxiliary engine, and the work of final adjustment is proceeded with. That completed, the engines are again taken apart and transferred to the vessel for which they have been built. A Stern View, showing Twin Screws. Has the reader ever stood in the engine-room of an ocean steamer when she was plunging through an Atlantic gale at the rate of seventeen or more knots an hour? Even if he has done so, and been awed by the experience, it is not likely that he has been able to fully realize the immensity of the power exerted. He needs some standard of comparison, and for that purpose we may offer him the ancient galley, and repeat a passage from the address made by Sir Frederick Bramwell at the meeting of the British Association last September: “Compare a galley, a vessel propelled by oars, with the The City of New York ready for Launching. Model of a Steamer Designed to Cross the Atlantic in Five Days. Huge as the several parts are, their adjustment is a matter of extreme delicacy, and yet so carefully is it accomplished that a steamer may leave the builder’s hand at Fairfield and proceed on a voyage of twenty days or more without once having to slacken speed on account of her engines. It is a fair sight to see the men come to work when the bell rings in the morning. When the yard is fully occupied there are between six and seven thousand of them, and the wages paid have amounted in one year to one million eight hundred and seventy-five thousand dollars. The head and front of all this industry—Sir William Pearce—was himself in early life a workman in the yard. I met him soon after his elevation by the Queen to the baronetage. He was then, apparently, in the best of health, and was full of plans for building still faster steamers for the Atlantic. That he would have soon put afloat a vessel of greater speed than his own Etruria, there is no doubt |