Having seen in the preceding chapters that man is adapted by nature of his constitution to live upon vegetable foods (meaning by this latter term not only vegetables, but fruits and nuts as well), we must next turn to a consideration of the question as to whether these foods would supply all the necessary elements for the nutrition of the human body. The bodily tissues being in a constant state of flux—worn-out particles of the body being continuously thrown off by means of the various eliminating organs, and fresh material constantly taking their place and being built into living tissue—it is obvious that the nature of this material supplied to the body should be of the best in quality; and that best adapted to maintain its structural integrity. If certain elements are lacking in the food material supplied, these elements will be lacking throughout every stage of the process of digestion, and the tissues ultimately become impoverished because of the lack of them. The chief reason why we eat meat (apart from mere custom), is that it contains a fairly large percentage of proteid—that material from which the muscles are largely built, and which physiologists have lately come to believe is one of the true sources of the bodily energy. Meat being a highly concentrated article of food, and, as before said, containing a large percentage of this proteid, it has always been considered necessary that more or less of it should be consumed in the course of the day in order to offset or replace the wastes necessitated by physical exercise and other causes. Professor Russell H. Chittenden, “The organic substance of all organs and tissues, whether of animals or plants, is made up principally of proteid matter.... Proteid substances occupy, therefore, a peculiar position in the nutrition of man and of animals in general. They constitute a class of essential food-stuffs without which life is impossible. For tissue building, and for the renewal of tissues and organs, or their component cells, proteid or albuminous food-stuffs are an absolute requirement. The vital part of all tissue is proteid, and only proteid food can serve for its growth or renewal; hence, no matter how generous the supply of carbohydrates and fats, without some admixture of proteid food, the body will weaken and undergo ‘nitrogen starvation....’ It is thus quite clear that the true proteid foods are tissue builders in the broadest sense of the term, and it is equally evident that they are absolutely essential to life, since no other kind nor form of food-stuff can take their place in supplying the needs of the body. Every living cell, whether of heart, muscle, brain or nerve requires its due allowance of proteid material to maintain its physiological rhythm. No other food-stuff stands in such intimate relationship to the vital processes; and, so far as we know at present, any form of true proteid, whether animal or vegetable, will serve the purpose.”[14] It will be seen from the above, therefore, that proteid is doubtless the most essential element in our diet; and a lack of proteid material in the food ensures more disastrous consequences to the organism than any other single deviation from a normal diet. Meat, as we have said, contains a large percentage of proteid, and, this being the case, it is evident that, if we are to discard it as an article of diet, we must replace it by other foods which contain an equal amount of proteid, or must The simplest, and in fact the only way to settle this question, therefore, is to compare the chemical analyses of the various food-stuffs, and see if any non-flesh foods contain as much proteid as meat does. If they do, and if it can be shown, further, that their proteid is as easily assimilable and as nutritious as animal proteid, then the case will have been won—for the reason that there will no longer be any grounds for defending flesh-eating, upon the basis that that is the only article of diet capable of supplying the body with the requisite amount of proteid. I shall take these chemical analyses from the latest official bulletins—those issued under the supervision of the U.S. Department of Agriculture, and corrected up to 1908. The bulletin from which I quote these tables is entitled “The Chemical Composition of American Food Materials,” and is written jointly by Professors W.O. Atwater and A.P. Bryant. These authors first of all define what they mean by the “composition of food materials,” as follows:— Composition of Food Materials “Ordinary food materials, such as meat, fish, eggs, potatoes, wheat, etc., consist of: ”Refuse.—As the bones of meat and fish, shells of shellfish, skin of potatoes, bran of wheat, etc. “Edible portion.—As the flesh of meat and fish, the white and yolk of eggs, wheat flour, etc. This edible portion consists of water (usually incorporated in the tissue and not visible as such), and nutritive ingredients or nutrient. “The principal kinds of nutritive ingredients are protein, fats, carbohydrates, and ash or mineral matters. “The water and refuse of various foods and the salt of ”Protein.—This term is used to include nominally the total nitrogenous substance of animal and vegetable food materials, exclusive of the so-called nitrogenous fats. Actually it is employed, in common usage, to designate the product of the total nitrogen by an empirical factor, generally 6.25. “This total nitrogenous substance consists of a great variety of chemical compounds, which are conveniently divided into two principal classes, proteids and non-proteids. “The term proteid, as here employed, includes (1) the simple proteids—e.g. albuminoids, globulins, and their derivations, such as acid and alkali albumins, coagulated proteids, proteoses, and peptones; (2) the so-called combined or compound proteids; and (3) the so-called gelatinoids (sometimes called “glutinoids”) which are characteristic of animal connective tissue. “The term albuminoids has long been used by European and American chemists and physiologists as a collective designation for the substances of the first two groups, though many apply it to all three of these groups. Of late a number of investigators and writers have employed it as a special designation for compounds of the third class.[15] “The term non-proteid is here used synonymously with non-albuminoid, and includes nitrogenous animal and vegetable compounds of simpler constitution than the proteids. The most important animal compounds of this class are the so-called “nitrogenous extractives” of muscular and connective tissue, such as creatin, creatinin, xanthin, hypoxanthin, and allied cleavage products of the proteids. To some of these the term “meat bases” has been applied. The latter, with certain mineral salts (potassium phosphates, etc.), are the most important constituents of beef tea and many commercial “meat extracts.” “The non-proteid nitrogenous compounds in vegetable “The ideal method of analysis of food materials would involve quantitative determinations of the amounts of each of the several kinds or groups of nitrogenous compounds. This, however, is seldom attempted. The common practice is to multiply the percentage of nitrogen by the factor 6.25 and take the product as representing the total nitrogenous substance. For many materials, animal and vegetable, this factor would be nearly correct for the proteids, which contain, on the average, not far from 16 per cent. of nitrogen, although the nitrogen content of the individual proteids is quite varied. The variations in the nitrogen of the non-proteids are wider and they contain, on the average, more than 16 per cent. of nitrogen. It is evident, therefore, that the computation of the total nitrogenous substance in this way is by no means correct. In the flesh of meats and fish, which contain very little of carbohydrates, the nitrogenous substance is frequently estimated by difference—i.e. by subtracting the ether extract and ash from the total water-free substance. While this method is not always correct, it is oftentimes more nearly so than the determination by use of the usual factor. “The distinction between protein and proteids is thus very sharp. The latter are definite chemical compounds while the former is an entirely arbitrary term used to designate a group which is commonly assumed to include all of the nitrogenous matter of the food except the nitrogenous fats. “In the tables herewith the common usage is followed, by which the protein is given as estimated by factor, i.e., total nitrogen multiplied by 6.25. In the analyses of meats and fish, however, the figures for protein ‘by difference’ are also given. Where the proteid and non-proteid nitrogenous matter have been estimated in a food material the proportions are indicated in a footnote. “Fats.—Under fats is included the total ether extract. Familiar examples of fat are fat of meat, fat of milk (butter), oil of corn, olive oil, etc. The ingredients of “Carbohydrates.—Carbohydrates are usually determined by difference. They include sugars, starches, cellulose, gums, woody fibre, etc. In many instances separate determinations of one or more of these groups have been made. The determinations of ‘fibre’ in vegetable foods, i.e., substances allied to carbohydrates but insoluble in dilute acid and alkali, and somewhat similar to woody fibre, are given in a separate column. The figures in parenthesis in the crude-fibre column show the number of analyses in which the fibre was determined. The figures for ‘total carbohydrates’ include the fibre, as well as sugars, starches, etc. Where the sugars or starches have been determined separately footnotes are added giving the average results. “Ash or Mineral Matters.—Under this head are included phosphates, sulphates, chlorides, and other salts of potassium, sodium, magnesium, and other metallic elements. Where analyses of the mineral matters have been found they are added in the form of footnotes. These results usually give the percentage composition of the ash as produced by incineration rather than the proportions in which the different mineral ingredients occur in the food material. “Fuel Value.—By fuel value is meant the number of calories of heat equivalent to the energy which it is assumed the body would be able to obtain from one pound of a given food material, provided the nutrients of the latter were completely digested. The fuel values of the different food materials are calculated by use of the factors of Rubner, which allow 4.1 calories for a gram of protein, the same for a gram of carbohydrates, and 9.3 calories per gram of fats. These amounts correspond to 18.6 calories of energy for each hundredth of a pound of protein and of carbohydrates, and 42.2 calories for each hundredth of a pound of fat in the given food material. In the following table the fuel value per I now present a few extracts from these lengthy tables of the chemical composition of food materials—mentioning, first, some typical meats, then fishes, vegetables, grains, flours, etc., dairy products, fruits, nuts, and various sundries. I take but a few of each, in order to show the typical proteid value of the various foods, without making these tables too long; and the reader can readily see, by referring to the column of proteid percentage, that many articles of diet contain a far larger percentage of proteid than the best meats! I present the tables, however, before discussing this question at greater length. See the Displaced Table. In the above selections from Atwater and Bryant’s tables, I have chosen, in every case, the best parts or cuts of the meat, and those meats which are supposedly most nutritious, to balance against my selected list of vegetables, etc.—containing the highest percentage of protein. If the tables be examined carefully, the following astonishing facts will be brought to light:—That while in lean ribs of beef (considering only the edible portion) we find that the protein percentage is but 19.6, with a fuel value per pound of 870; that while cooked mutton contains a protein percentage of 25.0, with a fuel value of 1420 cal. per pound, almonds (nuts) contain a protein percentage of 21.0, with a fuel value of 3030! Again, we find a protein percentage of 27.9, with a fuel value of 3165 for butter-nuts; a protein percentage of 25.8, with a fuel value of 2560 for peanuts; a protein value of 27.6 and a fuel value of 3105 for black walnuts; and a protein value of 16.6 and a fuel value of 3285 for California walnuts (to mention but a few instances). The protein percentage of ribs of beef is but 17.8! Even As against the figures just quoted, let me cite two or three analyses of meat soups, which have frequently been administered to invalids under the idea that they are “strengthening” and “heating”—thus supporting or maintaining the temperature and the energy of the sick person. Apart from the fundamental error contained in this theory—that we do derive our strength and the heat of the body from the food eaten (which I have endeavoured to prove incorrect in my “Vitality, Fasting and Nutrition,” pp. 225-303; 332-350; 448-459; etc.), there is the direct evidence afforded by the chemical analysis of these articles of diet. As opposed to an average of more than 20.0 protein percentage, and a fuel value averaging more than 1600 calories, we find for beef soup, as purchased, a protein percentage of 3.2 and a fuel value of 295; a protein percentage of 1.8, and a fuel value of 195, for clam chowder; and a protein percentage of 4.6 and a fuel value of 370 for ordinary meat stew! Quite apart, therefore, from the argument based upon the fact that all meat juices and extracts contain, in addition to the nutritious principles, a large amount of poisonous or toxic material, we have here direct evidence of the fact that these meat soups, so generally administered to invalids, are totally lacking both in high protein value and in fuel value; and when we consider that, in addition to all this, they contain a large amount of poisonous matter in solution, it will be seen how false is the doctrine of administering soups of this character to patients, under the impression that we are helping them to sustain their bodily heat, their energies and their strength! Let us now make another short list of comparisons. Fresh ham, medium fat, average edible portion, contains 15.3 protein percentage, with a fuel value of 1505; dried cow peas, on the other hand, have a protein percentage of 21.4, with a fuel value of 1590. Leg of Let us now briefly examine the other constituents of food, in order to see if the requisite amount of fats, carbohydrates, salts, etc., are supplied. As before stated, our chief reason for eating meat at all is that it is supposed to contain a larger percentage of protein than any other article of diet; but we have seen that this is not the case. It is generally conceded by all those who defend a “mixed,” or partly flesh diet, that vegetable foods and fruits will supply all the fats and carbohydrates needed by the system—the percentage of protein being always the point in dispute. However, in order to make this perfectly plain to the reader, I shall adduce a few examples of the various food-stuffs, in order that it can be seen at once that all these other constituents of food are likewise contained, in far greater quantities than they are in meat, in almost all other articles of diet. A few examples will render this clear. First of all, let us take the fats. In the edible portion of very fat beef we have a percentage of 32.3 and 27.6 per cent. fat on the edible portion of fat loin of beef. We find a percentage of 35.6 fat on fat ribs of beef. But when beef is cooked, as it must be before eating, we find the amount of this fat greatly reduced. Thus sirloin steak contains but 10.2 per cent. of fat; the Now, when we turn to dairy products and to the vegetable kingdom for our fats, we find that a very large amount of fat is contained in a number of articles of diet—far greater than in any of the fattest meats. Thus, butter contains 85 per cent. fat; American cheese, 38.3 per cent. fat; California cheese, 33.4 per cent. fat; cheddar cheese, 36.8 per cent.; cream cheese, 58.0 per cent.; full cream cheese averages 33.7 per cent.; old English cheese, 42.7 per cent.; etc. Cream, on the other hand, contains less than we should Our great source of fats, however—leaving out all dairy products, which, it might be claimed, are indirectly derived from the animal kingdom—is nuts. The great value of these articles of food will become apparent to us when we see that not only are they at the head of the list in protein percentage and in fuel value, but also in the percentage of their fats. Thus we find almonds average 54.9 per cent. fat; beech-nuts, edible portion, 57.4 per cent.; Brazil-nuts, edible portion, 66.8 per cent. fat; butter-nuts, 61.2 per cent. fat; cocoanuts, 50.6 per cent. fat; filberts, 65.3 per cent.; hickory-nuts, 67.4 per cent.; peanuts, 38.6 per cent.; pea-nut butter, 46.5 per cent.; pecans, 71.2 per cent.; pine-nuts, 60.7 per cent.; California walnuts, 64.4 per cent.; black California walnuts, 53.3 per cent.; soft-shell walnuts, 63.4 per cent. Chocolate also contains 48.7 per cent. fat. If now we compare with these figures those “highly nutritious” invalid foods, meat soups, etc., we find the fat percentages to run as follows:—Beef soup, .4 per cent. fat; chicken, .8 per cent.; clam chowder, .8 per cent.; and meat stew, averaging 4.3 per cent. fat. Let us now compare the relative percentages of carbohydrates. In the majority of meats these are so very low that it might almost be said they contain no carbohydrates at all. In the above tables from Atwater and Bryant’s analysis, it will be seen that no figures at all appear in the column for carbohydrate percentages. With the single exception of tripe, which contains an average of .2 per cent., no mention is made of a percentage of carbohydrates in any of the meats. Hens’ eggs also contain practically none. Poultry and game, when cooked, average from 2 per cent. to 5 per cent.; fish contain practically none, while shell Turning now to dairy products, we find that various cheeses furnish from 2 per cent. to 4 per cent. carbohydrates; milk averages 5 per cent., but condensed, unsweetened milk, or evaporated cream, average 11.2 per cent. It will be seen, therefore, that dairy products, coming as they do, indirectly from the animal kingdom, furnish a comparatively small percentage of carbohydrates. Let us now turn to the vegetable kingdom, including the grains, and see the relative percentage obtained from them. Taking first the flours and the meals, we find: barley, granulated, contains 79.8 per cent. carbohydrates; buckwheat flour, 77.9 per cent.; corn flour, 78.4 per cent.; corn meal, 75.4 per cent.; oat meal, 67.5 per cent.; rolled oats, average 66.2 per cent.; rice, average 79 per cent.; flaked rice, 81.9 per cent.; entire wheat flour, 71.9 per cent.; dried beans, 59.6 per cent.; beans, frijoles, 65.1 per cent.; lima beans, 65.9 per cent.; dried peas, 62.0 per cent.; cow peas, 60.8 per cent.; potatoes, 18.4 per cent.; evaporated potatoes, 80.9 per cent. Turning to fruits, we find that some of them contain quite a large percentage of carbohydrates—from 10 per cent., in the case of blackberries, cranberries and peaches, to 22 per cent. in the case of bananas. Other fruits in their fresh condition range between these. Certain nuts also contain a large percentage of carbohydrates. Thus, almonds contain an average of 17.3 per cent.; chestnuts, an average of 42.1 per cent.; dried chestnuts, 74.2 per cent.; cocoanuts, 27.9 per cent.; Lichi-nuts, 77.5 per cent.; peanuts, average, 24.4 per cent.; malted nuts, 43.9 per cent. Chocolate also contains 30.3 per cent.; cocoa averages Turning now to the column marked “ash” in the various tables, we find that all meats contain an average of about 1 per cent. Corn beef, pickled tongue, etc., cannot be fairly included in the list, because of the mineral salts injected into the tissues of the animal. But in all other cases 1 per cent. will be found a most liberal allowance for this ash. It will be remembered that our authors classified under the heading of “mineral matters,” all phosphates, sulphates, chlorides, salts of potassium, sodium, etc. These are very essential articles of diet, though the part they play in digestive processes is not yet fully understood. They must be considered, however, valuable portions of all food-stuffs; and, other things being equal, the larger percentage of salts contained in organic compound (not as separate mineral elements) the better. Now, when we come to compare the articles of food derived from the vegetable world, with animal products, we find a very much larger percentage of all mineral matters, in these foods. A few references will make this clear. Rolled oats contain 2.1 per cent.; rice flour, 8.8 per cent.; wheat flour, 4.8 per cent.; dried beans, 3.5 per cent.; dried lentils, 5.7 per cent.; evaporated potatoes, 3.1 per cent.; almonds, 2 per cent.; beech-nuts, 3.5 per cent.; Brazil-nuts, 3.9 per cent.; butter-nuts, 2.9 per cent.; chestnuts, 2.2 per cent.; peanuts, 2 per cent.; pignolia nuts, 3.3 per cent.; Sabine pine-nuts, 4.7 per cent.; pistachio-nuts, In thus giving the total percentage of ash contained in any food, however, it must not be forgotten that this is but a crude and imperfect method of arriving at a just estimate of the value of that food, so far as its ash percentage is concerned. Although the percentage of mineral matters contained in the various foods is very small, the part they play in the economy is exceedingly important—altogether disproportionate to the relatively small quantity of this matter. It is well known that if we feed animals (or, for that matter, human beings), upon certain foods, lacking in salts, these individuals will ultimately die of “saline starvation”—no matter how much food may have been eaten, or how well proportioned the proteids, fats and carbohydrates. This is an astonishing fact. These mineral elements, contained in organic compound, must not be confused, however, with the same elements in inorganic form—in which condition they are quite unusable by the system. This is a question, however, into which I do not desire to enter now. It is very necessary, however, to point out and insist upon this fact—that giving the total percentage of ash constitutents or mineral matter, in any given article of food, is of small value to us when attempting to balance a diet, unless we know in what this percentage of mineral matter consists. That is, 1.7 per cent. ash of a given food may be composed of five different mineral elements (in organic form) and the proportion of each would vary largely. It is quite possible, therefore, for there So far as I have been able to discover, only two authors have paid particular attention to this question of minute ash percentages: Dr H. Lahmann, in Germany, and Mr Otto CarquÉ, in America. Both of these authors have gone to considerable trouble Dr Lahmann shows us that we may replace any quantity of meat or lentils, as well as bread and flour, by fruits or green vegetables, and that the amount of lime and other bone-forming salts will be increased thereby. As a general thing it may be said that there is a superabundance of potash in vegetable food. A large number of diseases were found to be due to a disproportion of the organic salts—this argument running throughout Dr Lahmann’s book. The following table will show clearly the percentage of the various mineral salts in food-stuffs, and will prove conclusively that certain salts, lacking in the human system, can never be supplied by any amount of meat; and, further, that a number of these salts cannot be supplied in proper quantities by any other articles of food than fruits. These, and these alone, contain many salts in solution which the system needs. I shall, however, consider this question at greater length when I come to discuss the value of the fruitarian dietary. For the moment, let us turn our attention to the tables of ash percentages. Now, if we compare the figures in the following tables, we find that in practically every case the quantity of any given food-salt is greater in all fruits, and practically in every other article of diet than it is in meat. Taking potassium, for example, we find that meat averages (out of the total percentage of mineral matter) 41.30 per cent., while blueberries average 57.1 per cent.; and olives, 80.9 per cent. If we compare the quantity of sodium, we find that meat contains 3.6 per cent.; while apples contain 26.1 per cent.; strawberries, 28.5 per cent.; dried figs, 26.2 per cent. As some of these, however, are percentages of smaller total ash percentages, the disproportion is not so great as would at first appear, though it is evident that the fruits contain much more, even allowing for this. Making the same reservations, we find that while meat contains, of iron, an average of .7 per cent., strawberries contain 5.9 per cent.; gooseberries 4.56 per cent.; prunes, 2.5 per cent.; while spinach contains 3.35 per cent.; asparagus, 3.4 per cent.; and lettuce, 5.2 per cent.
It is evident that, making all allowances for a smaller total ash percentage, these articles of diet contain a far greater percentage of iron than does meat, and the same is true of practically all other salts, as can be seen by referring to the tables. It is evident, therefore, that other food-stuffs, and particularly fruits, will supply us with more mineral matter than will the best of meats, and are to be preferred in consequence. It will not be necessary for us to compare the columns headed “Refuse” and “Water,” since these are practically the same in all food-stuffs, on the average, and they do not effect, appreciably, the food-value of any article of diet. There remains only one valid objection to my argument, and that is based upon the supposed fact that a larger percentage of animal proteid is appropriated by the system than is the case in vegetable foods. That is, given a certain quantity of animal and vegetable foods, both containing an equal amount of proteid, more will be appropriated from the animal than from the vegetable food-stuffs. A great many writers, such as Miss Leppel, in England, have taken this ground. But I would point out, first of all, that, even if it were true, it would not invalidate the argument in the least, for the reason that a far larger percentage of proteid is contained in a smaller amount of non-flesh food, such as nuts; and for that reason it would be easy enough to supply the system with the same amount of proteid from an equal, or even a lesser, bulk of food—even granting the validity of the argument. But I dispute the fact itself. Professor Russell H. Chittenden, of Yale University, one of the most famous physiologists in America, and director of the Sheffield Scientific School, writes in his “Nutrition of Man” as follows:— “In the digestion of proteid food-stuffs by the combined action of gastric and pancreatic juice in the alimentary tract, a large proportion of the proteid is destined to undergo complete conversion into amino-acids; and, from these fragments, the body, by a process of synthesis, can construct its own peculiar type of proteid. This latter suggestion is worthy of a moment’s further consideration; as is well known, every species of animal has its own peculiar type of proteid, adapted to its particular needs. The proteids of one species directly injected into the blood of another species are incapable of serving as nutriment to the body, and frequently act as poison.... The availability or digestibility of food can be determined only by physiological experiment. By making a comparison, for a definite period of time, of the amount of the different food ingredients, and the amount that passes unchanged through the intestines, an estimate of its digestibility can be made.... In a general way it may be stated that with animal foods, such as meats, eggs, and milk, about 97 per cent. of the contained proteid is digested, and thereby rendered available to the body. With ordinary vegetables, on the other hand, as they are usually prepared for consumption, only about 85 per cent. of the proteid is made available. With a mixed diet, with a variable admixture of animal and vegetable foods, it is usually considered that about 92 per cent. of the proteid contained therein will undergo digestion.” At first sight, it would appear that this runs counter to the argument that has been advanced; but we must take into account the fact that Professor Chittenden is here speaking only of vegetable proteid, and has made no mention of nuts; and, as we have seen from the tables, nuts contain a far larger percentage of protein than meats. When we take into consideration the small disproportion in the percentage assimilated, and find that when meat is mixed with other articles of food, as it invariably is, the percentage of its availability is reduced to 92 per cent., while vegetable foods are proportionately raised to the same figure, we see Another great argument which has always been advanced in favour of meat-eating, or the ingestion of proteid in the form of animal, as opposed to vegetable food, is that the proteid derived from the animal is far more quickly and readily assimilated by the system than vegetable proteid. The rapidity of the digestion of animal food has always been urged as one of the strongest arguments in its favour, and it is largely for this reason that it has been administered to invalids, and to patients in a depressed and weakened state of body. But now we find that physiological research has completely disproved this old dogma! Professor Chittenden, on p. 30 of his “Nutrition and Man,” says: “It is evident from what has been stated that the gastric digestion of proteid foods is a comparatively slow process, involving several hours of time; and further, that food material in general remains in the stomach for varying periods, dependent upon its chemical composition.... It is a mistake to assume that the digestion of proteid foods is complete in the stomach. Stomach digestion is to be considered more as a preliminary step, paving the way for further changes to be carried forward by the combined action of intestinal and pancreatic juice in the small intestines.... The importance of gastric digestion is frequently overrated.” Dr Sylvester Graham, writing on this subject years ago in his “Science of Human Life,” said: “In vain have they attempted to regulate the diet of man on the chemical principles, and insisted on the necessity for certain chemical properties in the human element to sustain the vital economy. That economy has shown them that it can triumph over the chemical affinities and ordinary laws of organic matter, and bend them to its purposes at pleasure; generating and transmuting from one form to another, with the utmost ease, the substance which human science calls elements; and while the living organs retain their functional power and integrity, elaborating from every kind of element on which an animal can subsist, a chyle so nearly identical in its physical and chemical character, that the most accurate analytical chemists can scarcely detect the least appreciable difference.... Though, while the health and integrity of the assimilating organs are preserved, the physical and chemical character of the chyle are nearly identical, whatever may be the elementary substance from which it was elaborated, yet the vital constitution of the chyle and blood, and consequently of the solids, is greatly affected by the quality of the food. When chyle is taken from the living vessels, the vital constitution of that which is elaborated from flesh meat is capable of resisting the action of bacterial decomposition only a short time, and will begin to putrefy in three or four days at the longest; while the vital constitution of that which is elaborated from pure and proper vegetable elements, will resist this decomposing action for a much larger period, yet it will in the end putrefy with all the phenomena of that formed from flesh meat.” The bearing of these facts on physical training, the health of the body, and the decomposition of the body after death, need only be pointed out. It is really extraordinary how writers on dietetics, seem to take a delight, as a rule, in making as many mis-statements and misrepresentations as possible. Take, for example, the following passage in Dr C.S. Read’s Book, “Fads and Feeding”:— “It is necessary, with the vegetable products, to take the nitrogenous product as Nature gives it to us, Now, not a sentence in the above quotation is correct. If Dr Read had studied vegetarians at first hand, he would have found out his mistakes, and would not have written such rubbish. As a matter of fact, vegetable foods do not supply less nitrogen than meat, but on the contrary more; a vegetable diet need not be bulky, if properly selected—less of it need be eaten than of a mixed diet, because of its greater nutritive value; while the notion that the absorbtion of water from the foods make the tissues “flabby” is, of course, absurd. Altogether, this is almost the greatest string of inaccuracies regarding diet that I have ever come across. There is one aspect of this question which it might be well to touch upon in this place. The air that we breathe, as we know, contains a large percentage of nitrogen. Might it not be possible for the system to utilise some of this nitrogen, when the body is in a state of nitrogen starvation? Dr De Lacy Evans, surgeon to St Saviour’s Hospital, in London, contended that this might be the case, and in his “How to Prolong Life,” pp. 76-80, wrote: “It has been argued that fruits will not sustain life, because they do not contain sufficient nitrogen; this argument is founded upon a theory which is demonstrably incorrect, and it is an ascertained fact that fruits alone will support life and good bodily health.... By experiments on ourselves, on friends, and on natives of tropical regions, we find a comparatively small quantity of nitrogen necessary to sustain life; in fact, fruits, taken as a class, contain sufficient nitrogen to sustain human life.... Now fruits will sustain life, and all fruits contain carbon, hydrogen and oxygen, and most of them a small quantity of nitrogen; and if these fruits which will sustain life do not contain sufficient nitrogen, may not man, who breathes and is in contact with an atmosphere (four-fifths of which is nitrogen), by means of his lungs, the surface of which is supposed to be more than twenty times that of the whole body, absorb the necessary nitrogen directly from the atmosphere? From careful observation of the diet of natives in tropical regions, and from direct experiments in England, we may state that this is positively the case. This is often observed in the herbivora: their natural food contains little nitrogen, still it is found in their flesh in about the same ratio as in the carnivora. Further, the carnivora live on food rich in nitrogen—yet one is as well nourished as the other.... Man may live entirely upon fruits, in better health than the majority of mankind now enjoy. Good, sound, ripe fruits are never a cause of disease; but the vegetable acids, as we have before stated, lower the temperature of the body, decrease the process of combustion and oxidation—therefore the waste of the system—less sleep is required, activity is increased, fatigue or thirst hardly experienced: still the body is well nourished, and as a comparatively small quantity of earthy salts are taken into the system, the cause of ‘old age’ is in some degree removed, the effect is delayed, and life is prolonged to a period far beyond our ‘three score years and ten.’”[17] The consensus of modern opinion, however, seems to be against any such supposition. Chittenden, for example, writes:[18] “Man lives in an atmosphere of oxygen and nitrogen. He can and does absorb and utilise the free oxygen of the air he breathes; indeed, it is absolutely essential for his existence, but free nitrogen likewise drawn into the lungs at each inspiration is of no avail for the needs of the body.” As, however, all bodies contain more or less nitrogen in excess, there would be no need to call upon the air for its supply. It would be interesting to note the effects in cases of nitrogen starvation; but the simple fact that animals do die when sufficient nitrogen is subtracted from their food, would seem to indicate that but little nitrogen, if any, can be extracted from the air, even under these circumstances. After the above lengthy argument, which endeavours to show that sufficient proteid can be supplied the body from vegetable foods, it is somewhat amusing to find that, as a matter of fact, far too much proteid has invariably been eaten by practically all civilised peoples—and that so far from there being any danger of nitrogen starvation, or lack of sufficient proteid, the danger is all the other way, and four-fifths of all the maladies from which mankind suffers are due to the very fact that an excess of proteid has been eaten! All physiologists agree that the majority of people eat far more, not only of proteid, but of all kinds of food, than is required, according to their tables; and Professor Chittenden has recently shown, as the result of an elaborate series of experiments conducted at Yale, that the average proteid standard set by physiologists, as being These Yale nutrition investigations are now so widely known that it would be useless to do more than refer to them in this place. As the results of experiments upon University professors, upon athletes, and upon a squad chosen from the United States army, it was definitely proved that the proteid standards were far too high: the men flourishing, improving in every direction, and even doing a greater amount of physical work than usual on a diet averaging, in proteid value, about a third said to be necessary by the physiologists. When we take into account the fact that most people eat far more proteid than the physiologists said was necessary, it will be seen at once the tremendous disproportion which exists between the amount actually consumed, and the amount really needed by the body; and how absurd it is, in face of these facts, to persist in demanding an excess of those foods which contain such high proteid percentages! Chittenden says: “There is no question, in view of our results, that people ordinarily consume much more food than there is any real physiological necessity for, and it is more than probable that this excess of food is in the long run detrimental to health, weakening rather than strengthening the body, and defeating the very objects aimed at.... One-half of the 118 grams of proteid food called for daily, is quite sufficient to meet all the physiological needs of the body, certainly under the ordinary conditions of life; and with most individuals, especially persons not living an active outdoor life, even a smaller amount will suffice.”[19] The figures and calculations throughout his works, however, show that the proteid intake may be reduced to fully one-third of that said to be necessary in standard physiologies, with nothing but increased health and strength. In summing up this question of the necessity of meat-eating, one important fact must not be lost sight of, which, in a sense, may be said to settle the argument in favour of the vegetarian dietary without further additional evidence of any kind. It is this: That the bodies of all animals are built from vegetable foods, and consequently, when we eat those animals, we merely eat the vegetable foods, upon which they have subsisted, at second hand! We appropriate or obtain the same chemical elements in organic compound that they originally obtained from their food, but we obtain nothing else. Animals have the power to create nothing. The single fact that all nutritive material is formed by vegetables—animals having the power to appropriate but never to form or create food elements—is proof positive, to my mind, that we can derive all the nutriment we need directly from the vegetable world, and that the best food, and that which is most conducive to man’s highest development—bodily, mentally and spiritually—is found in the use of these vegetables themselves. Those who eat animal food do not get a single element of nutrition, save that which those animals have obtained from vegetables. Hence man, in taking his nutrition indirectly, by the eating of animals, must of necessity get the original nutriment more or less deteriorated from the unhealthy conditions and accidents of the animal he feeds upon—with the impurities and putrescent matters mingled with the blood and in the viscera of animal substances, which are invariably present. Apart from this aspect of the problem—which is one rather of hygiene than of chemistry, and hence will be discussed |