“After structure—function!” Having seen in the last chapter that man is constructed throughout for a diet composed entirely of fruits, nuts, grains, and other non-flesh foods, we now turn to a consideration of the functions of the various organs of the body—the chemical composition of the organic tissues, secretions, etc.—in order to see if these will further bear us out in our argument. There can be no question that the most important argument of all, on this subject of diet, is the argument based upon comparative anatomy—since that argument places man in his right class immediately, and in a manner that cannot be evaded by any amount of argument. But other aspects of the question are also of importance, and afford strong proof of the natural character of man’s diet. The next argument we should consider, therefore, is the physiological, and we shall first of all consider the secretions. The Saliva.—The differences between the saliva of man and that of any of the carnivora is striking. In man, this secretion is alkaline—though only slightly so, in a healthy man. Nevertheless, that is its normal reaction, and to this there is no exception. In the carnivora, on the other hand, the reaction is acid, and because of this fact is capable of dissolving the food more or less whole, and without the long process of mastication necessary for the herbivora and frugivora. The saliva in the human being effects many chemical changes in the food—notable among these being the conversion of starch. Were man intended to live on The Gastric Juice.—Dr Schlickeysen says of this:[10] “A leading element of the gastric juice is lactic acid. This excites a slight fermentation of the chyme, and thus exerts an influence upon the digestion of vegetable, but not upon that of animal, food. It is far too weak to act upon the fibres of animal flesh. All fats are insoluble in water, spirits of wine, and acids. Flesh, when eaten by man, tends to undergo a process of decay in the stomach, causing a scrofulous poisoning of the blood. In this unnatural action lies the cause of many complaints and disturbances of the system: as bad breath, heartburn, eructions and vomiting. In the case of the carnivora, the gastric juice exerts a decomposing influence upon flesh, and causes its assimilation and excretion. Since the pancreatic juice of the duodenum, into which the chyme passes from the stomach, bears a close resemblance to the saliva, it follows that the chyme here, also, can have only a slightly acid property, which it indeed can only have when it is of a vegetable character. Bile, which is here poured into the intestines, has only a slight alkaline reaction, and its use seems to be limited to the prevention of decay; which, however, can only occur in the case of flesh-food; so that the effort of nature to maintain flesh-food in its proper condition by the secretion of bile must be excessive, and must eventually cause an excitement and weakening of the whole organism.” And Dr Kellogg has pointed out[11]: “Another property possessed in a high degree by the gastric juice of carnivorous animals is its antiseptic or germicidal quality. When exposed to the conditions of warmth and moisture, flesh, whether that of mammals birds or fish, readily decomposes or decays, giving rise In man, this secretion is very weak, comparatively speaking, and hence of small value in preventing such putrefactive changes as those mentioned above. Take any piece of meat, and expose it for some considerable period to an environment of heat and moisture, and see the result! Putrefaction soon occurs—except where the meat is “embalmed” or preserved by powerful chemicals—thus rendering it unfit for human food. But it will be seen that just such conditions prevail in the human alimentary tract as are most suitable for the speedy and deadly decomposition of the food eaten; and, in the case of flesh-foods, the resulting products are poisonous in the last degree. The gastric juice of the human stomach being so far weaker than that of the carnivorous animal, the flesh is far less completely acted upon and digested in the stomach—much more work being passed on to the intestines, in consequence. Now comes in a most important factor. The bowel of the carnivorous animal is, as we have seen, short, (three times the length of the body) when compared to the frugivora, whose alimentary tract is about twelve times the length of the body. That is, the digestive tract in man is, roughly, about four times as long as in the carnivorous animal. The result of this is that any food eaten would take, ceteris paribus, four times as long to pass through the tube in the one case as in the other. This fact alone is sufficient to condemn the use of flesh-foods in any form for frugivorous animals, since the But more than that, and worse still; the character of the internal structure of the tract is not alike in the two cases! In the carnivora, this is smooth, and offers but few impediments to the free passage of the food through it. In man, on the contrary, as with the higher apes and the herbivora, the intestine is corrugated or sacculated—this being for the express purpose of retaining the food as long as possible in the intestine, and until all possible nutriment has been abstracted from it. This is admirably suited to such foods as the herbivora and frugivora enjoy, but is quite unsuited for flesh-foods of all kinds—being, in fact, the worst possible receptacle for such foods. The intestine, in the carnivora, is suited for its particular food—it is short and smooth, and well adapted to dissolve the food quickly and pass it out of the system as rapidly as possible; while in frugivora, on the other hand, the intestine is adapted to retain the food a much longer time—the sacculated surface retaining the food as long as possible. The result of this is that, when flesh-foods are eaten, disastrous results are sure to follow. As previously shown, the liver is much larger, proportionately, in the carnivora; and not only is this the case, but the amount of bile secreted is far greater in the carnivora than in man. It has been found, by careful experiments upon dogs, that the quantity of bile might increase fifty per cent., and even more, under a purely meat diet; but rapidly decreased when the quantity and proportion of the meat was reduced. Thus it appears that the use of a meat diet requires a far greater degree of activity on the part of the liver than any other diet. This is amply provided for in the carnivore by the increased size and power of that organ, The kidneys also are greatly affected by the diet. It is now well known that uric acid is created in large quantities by a flesh diet—the measured excretions showing that from three to ten times as much uric acid is secreted when flesh is eaten as when no meat is ingested; and when we bear in mind the exceedingly disastrous effects of uric acid upon the system, and what a powerful disease-producing agency it is, I think that we must conclude that this symptom is strongly suggestive, and strongly indicative of the fact that man cannot eat meat without running grave chances of diseasing and ruining his organism. The Excretions.—There is also a marked difference in the excretory products of the various animals. While, in the carnivora, the action of the urine is acid, it is alkaline in the herbivora (or should be). In man it is frequently acid—though this varies with the nature of the food. Thus, if the diet be largely one of flesh, the urine will become far more acid, and will also become very offensive; the perspiration will also be tainted, and very noticeable to those with a keen sense of smell, and who do not eat meat themselves! This has frequently been observed, and may account for the fact that flesh-eating animals will always eat a horse or a sheep in preference to man, if it be possible. Doubtless, their keen sense of smell detects the fact that man is (usually) largely carnivorous in his habits, and their instinct teaches them that the flesh of the purely herbivorous animal is for this reason superior to that of man. Has anyone thought why it is that a cat will kill a mouse, and eat it, while a dog will kill a cat, but will not eat it? It is In addition to all these arguments, there are other forcible reasons for considering man as one of the non-flesh-eating animals—which reasons may be included in this chapter. The habits of any animal are distinctive; and they, collectively, indicate man’s position—though this argument must always be confirmatory, and not proof in itself. For instance, all naturally carnivorous animals sleep in the daytime, and prowl about in search of their prey at night; while with the vegetarian animals (man included) this is not the case. The manner of eating and especially of drinking, is also highly characteristic—all carnivorous animals lapping their liquids—while the herbivora and frugivora drink—as I have previously pointed out. The peculiar mode of function “Recent researches show us that uric acid arises from the decay of cell nuclei. That portion of uric acid which has its origin in the digestive organs is, like other alloxanic bases, changed into urea—or rather should be. But a diseased liver (or a healthy one which is overworked, owing to an excessive ingestion of food containing cell nuclei, and therefore an excessive amount of uric acid) is unable to transform all the uric acid formed into urea. The quantity of uric acid arising from the normal decay of the tissue is small; in fever, when there is a more rapid decay of cells, the quantity of uric acid and other related alloxanic bodies is considerably increased. The greater the quantity of useless body-material, and the worse (more dysÆmic) it is in quality, the greater is the danger of a more rapid decay of cells, and a precipitation of uric acid and related products taking place.... The uric acid, passing through the liver, may perhaps be transformed into urea by a special action of the cells; but the uric acid drawn directly from the digestive canal, and that formed directly from the assimilated food or from the body-material, has to be oxidised, in order to be excreted in the innocuous form of urea. An organism possessed of the faculty of oxidation is protected against a precipitation of uric acid, but in a dysÆmic organism, the faculty of transforming uric acid into urea is lessened.... It is a fact well worth considering that the urine of carnivorous animals—e.g. dog and cat—is often quite free from uric acid, while human urine varies in this respect according to the food taken: if vegetable food alone is consumed, the urine will contain, like the urine of herbivorous animals, only traces of uric acid (from ·2 to ·7 grammes “Now, if the excretion of the uric acid always took place easily, we should not have much trouble about its formation, but it is this excretion which constitutes the difficulty. Uric acid and the acid salts of the uric acid dissolve with difficulty in cold water; but more easily in warm; still, one gramme of uric acid requires from 7 to 8 litres of water at the temperature of the body for its solution. The acid urate of soda dissolves in 1100 parts of cold and 124 parts of boiling water. The ammonia salts and the salts of the alkaline earths do not dissolve nearly so easily. “The ‘warm water’ which keeps the uric acid and the uric acid salts dissolved in the body is the blood and tissue fluids. Serious disturbances must take place if this fluid becomes cooler or diminished in quantity; for a deposit of crystalline uric acid would occur in the body. “A person who has to daily excrete 2 grammes of uric acid, is constantly liable to this precipitation, as he may at any time lose large quantities of water through perspiration. It is, therefore, undoubtedly safer to have the uric acid combined with soda, as an acid urate; but where is soda to be obtained if it is absent from the blood, owing to dysÆmia? “The more acid the urine is, the more easily will a precipitation of the uric acid occur in the organism—for instance, in the kidneys or bladder. The urine of a person eating flesh contains a large amount of uric acid, as we have seen before; it is also strongly acid in reaction whereas the urine of herbivorous animals is generally alkaline in reaction.... “A very acid urine rich in uric acid is also produced by salt meat and salt fish, because in the process of salting, the basic salts (basic alkaline phosphates and carbonates) pass into the pickle water and neutral common salt takes their place. Russian physicians “If, then, it is true that our ordinary diet consists chiefly of foods rich in albumen and phosphoric acid but poor in soda, and that in consequence of this a tendency towards the accumulation of uric acid in the body is pretty generally found, the very slightest extra strain on the system will be sufficient to cause a precipitation of uric acid and uric acid salts in the body. This result is very often brought about by a chronic acid catarrh of the stomach, which in its turn depends upon dysÆmia, and is in 95 out of 100 cases the predecessor of gout. The fermentation acids, especially oxybutyric acid (which is found in the urine both in acid catarrh of the stomach and in diabetes mellitus), combine with some of the alkalies of the blood, and thus lessen its alkalescence (basic character); and as catarrh of the bowels and periodic diarrhoeas are frequently associated with acid catarrh of the stomach, these bases may be even directly excreted in the stools, and thus the quantity of alkalies in the blood be further diminished. “Now we find that men consuming vegetable food form only small quantities of uric acid, herbivorous animals as well as carnivorous hardly any, but men living on flesh-food very large quantities, we must come to the conclusion that men cannot properly manage flesh-food. The organism of the flesh-eating animal has the faculty of completely digesting flesh-food, whereas the organism of man is unable to accomplish this. Consequently man cannot be classed as carnivorous and cannot eat flesh unpunished.... “To illustrate this further, we may mention another important point here. Carnivorous animals have “Now as man is subject to sweating, it is evident that he was not intended to live on flesh, but on vegetables, or rather on fruits, for he was never meant to live on cereals.... Man may eat a limited amount of meat and cereals without doing himself much harm; but he must always remember that they ought never to form his principal food. “As soon as it is really understood that we were never intended to live on flesh and cereals, the uric acid diathesis as a trouble of mankind will disappear. We It is only by reason of the excessive functioning of the liver that we are not soon poisoned, as the result of such food, and when this organ is constantly over-taxed, as it often is, for a lifetime, it is apparent that it must sooner or later break down, and be ruined from overwork. |