STREET CLEANING SYSTEMS AND APPARATUS USED IN AMERICAN CITIES METHODS OF REDUCING LITTER COST DATA.
="brt c024"> <

Note: Seattle and Denver are the only cities which report that they clean their sidewalks. Denver limits its work to the business district. All cities report they do not dump sweepings in manholes. All cities except Salt Lake City and Norwich report they sprinkle streets preceding sweeping. Cambridge, San Francisco, and Springfield, Mass., are the only cities which report they do not have sprinklers precede squeegee machines.


1.On account of favorable weather conditions and the necessity of economising very little machine brooming is done.

2.One-tenth of it cleaned four times daily. Two-fifths once a day. One-half once a week.

3.Flushing only.

4.Hand cleaning, flushing and squeegeeing.

5.Not including alleys.

6.Flushing only.

7.Hand and machine sweeping and flushing.

8.Entire year.

9.Sweepers patrol streets from one to ten times daily.

10.Also includes machine sweeping, cleaned periodically.

11.Also includes machine sweeping—per year.

12.43,341 loads in year; 85% 2 cu. yds. each and 15% 3 cu. yds. each.

13.Four of these on the average will be sub-foremen at $3.50, and the other laborers at $2.50 for 8 hours. These men are also under the supervision of four district deputies at $125 a month each. These district deputies have many other duties.

14.Length of day eight hours, unless otherwise noted.

15.For water and oil.

16..045 foot frontage for 40 foot street.

.055 foot frontage for 50 foot street.

.065 foot frontage for 60 foot street.

17.City also paid for water and hydrant rental $25,329.88

18.Based on street 30 feet wide and sprinkled twice daily for 150 days.

19.Railroad company furnishes electric power and use of tracks for car sprinkler and power flusher. City pays for car.

20.City furnishes two men and company motormen and conductor. City owns sprinklers.

21.Including 10% of cost of machinery for depreciation and repairs and 4½% interest on machinery.

22.Trolley car flusher.

23.Per 1,000 sq. yds.

24.Does not include depreciation and interest.

25.On city work only. Does not include amount paid to contractor.

26.Includes cleaning drains and gutters and inlets, cleaning under small highway bridges and removing fallen trees from roadway.

27.One square equals 540 ft. including salaries and wages, cost of new appliances, repairs and maintenance of appliances and all other overhead charges.

28.Includes depreciation and repairs, but not general supervision.

                                                                                                                                                                                                                                                                                                           

Clyx.com

Previous
STREET CLEANING SYSTEMS AND APPARATUS USED IN AMERICAN CITIES--METHODS OF REDUCING LITTER--COST DATA.

In establishing or rearranging its street cleaning system, every city must consider the problem from three angles: (1) Cheapest method of cleaning pavement; (2) Method of reducing litter; (3) Paving policy with a view to saving cost of cleaning.

The proper solution of each one of these problems will materially reduce the cost.

In outlining a program for a street cleaning department the following elements must be known and carefully considered:

(1)
Kind of and state of repair of pavement.
(2)
Traffic to which they are subjected.
(3)
Facilities for disposing of street sweepings.
(4)
Climatic peculiarities.
(5)
Degree of cleanliness it is desired or expected to maintain.
(6)
Miscellaneous local circumstances.

Mr. S. Whinery, Consulting Engineer, says that in most cities the data afforded by local past experience and results, furnish the best basis for future projects and programs. Unfortunately few cities have records of these. The head of the department usually relies upon his own memory or that of his predecessor. While the methods followed and results obtained in other cities may and should be studied, it must be borne in mind that it is not safe to base conclusions upon such data without a full knowledge and careful consideration of all facts and conditions affecting them. This is particularly true of reported cost data, for in addition to differing physical conditions, it is unfortunately true that the present methods of accounting in many street cleaning departments make it next to impossible to ascertain the actual or relative unit cost of the various details of the work, and intelligently to compare results in one city with those in another. The experience of the New York State Bureau of Municipal Information in seeking data from the fifty largest American and all New York State cities provides ample proof of this condition. Fifty were able to give some data, but of these only a few had any accurate and detailed cost statistics.

The relative amount of dirt from the different sources of dust depends on the character of construction and condition of street surface, amount and character of traffic, character of neighborhood and people in the neighborhood, and street railway tracks.

Street dirt is divided into two general classes: (a) Natural, and therefore unavoidable, and (b) that due to carelessness and therefore avoidable. In the first class are dust from the air, and dirt coming from the wear of pavements, vehicles, tires and horses’ shoes; excrement of animals, dirt and sand which work up through the joints of pavements, laid on earth or sand foundations and having sand or gravel joints; dirt brought in from adjacent unpaved or macadam streets, and leaves from shade trees. In the second class are soot, refuse swept from sidewalks, thrown from buildings and discarded by pedestrians, dirt dropped from overloaded vehicles and dÉbris from construction operations.

The real duty of the street cleaning department is the removal of the first class, but in doing so it is compelled also to sweep up and cart away the material in the second class. In order to reduce its operations as much as possible, it must, therefore, in cooperation with the police and health authorities do everything it can to prevent the accumulation of the avoidable material by enforcing ordinances and through the cooperation of the public in general.

Contract vs. Municipal Cleaning

It is generally agreed that street cleaning by municipal employees is more satisfactory and economical than by contract. Even the officials of those few cities which still have the contract system favor municipal operation. Philadelphia is the only one of the twenty-five largest cities in the country which does the work by contract. The chief of the highway department has recommended a change, giving the following reasons: “Street cleaning work involves so much detail for which there are no definite units to specify and bid for, and it is of such a character that the overhead charges for proper inspection are so disproportionate to the cost of the work, that unquestionably it would be much more effectively and economically carried on directly by the municipal forces instead of by contract.”

Washington’s experience is illuminating. Notwithstanding changes in method as work progressed and considerable expense attached to the purchase of new equipment the street cleaning department was able to show at the end of the year under the municipal system that the average costs were less than contract prices. At the end of the second year for the expenditure of the same amount of money over 25 per cent. more work was accomplished than during the last year of the contract system and the general opinion was that the streets were in better condition than they had ever been before.

Method of Reducing Litter

Street cleaning departments of many progressive cities within the last few years have given particular attention to the preventive side of street cleaning work, i. e., reducing the amount of avoidable dirt on street pavements. Various methods have been adopted to secure results. Local civic pride and the cooperation of the public have been stimulated by means of educational campaigns. One result has been the more general use of waste paper and refuse street cans. Cleveland tried to organize volunteer corps among the school children to use their influence against the useless littering of streets. Departments have also established a closer relationship with the health and police authorities for the enforcement of street cleaning regulations, such as those prohibiting the sweeping of litter from stores and houses onto paved streets. The success of preventive work depends upon the amount of cooperation the street cleaners can get from these sources.

In Chicago an analysis was made of the character and percentage of waste thrown about by pedestrians in the streets and by business houses in densely populated sections of the city. It was found that a great portion of the street dirt collected by street cleaners consisted of waste paper and other light litter. The Chicago Civil Service Commission in a special report says: “It would appear that with the cooperation of merchants a considerable portion of such litter could be kept off the streets and if street cleaners would patrol the street for loose paper and deposit the same in the street dirt boxes provided at different points along such streets, a great portion of the cleaning work would be saved and the streets would generally appear cleaner. The litter of streets in tenement and manufacturing districts is a matter which can be greatly minimized by proper distribution of work and cooperation of the street cleaning forces and residents. The quantity of street dirt collected from the pavements in market places illustrates an instance where pavements become unavoidably littered.”

Gustave H. Hanna, when head of the Cleveland Street Cleaning Department, expressed the belief that nothing encourages carefulness on the part of the public so much as efficient and careful cleaning. He argued that a man does not hesitate to throw paper or rubbish into a foul street, but thinks twice if the street is clean. If there is a waste box at hand with a printed suggestion on the outside, Mr. Hanna thinks he is apt to use the box.

The greatest source of expense comes from those who use the street as a place of business, such as resorts of professional hucksters. Mr. Hanna and others think it would be a small return for the permission of doing business in these streets to require the hucksters to keep the surroundings clean at their own expense under pain of arrest or forfeiture of privilege.

In an effort to get the cooperation of the general public, Philadelphia placed waste paper receptacles in prominent locations throughout the city, such as two in every block in the principal business sections, in front of school houses and entrances to business, elevated and subway stations, etc. Circulars were sent to each householder throughout the city containing information and instruction as to improving conditions by using uniform and suitable receptacles.

Bulletins and letters of information were distributed among business and civic associations. The officials learned that one of the most effective methods in reaching the householder is through the women’s organizations. A woman inspector was appointed to keep in touch with the activities of the women’s clubs and to secure their cooperation. This inspector during the year gave over two hundred lectures to various organizations and enlisted the cooperation of householders, women and children in connection with preventive street cleaning measures. To the housekeeper it was shown how vital is her part in an efficient collection of all waste. Children were impressed with their duties as citizens, and to them was given an opportunity to demonstrate their knowledge in the home, school and on the street. As a reward of such activity 5,000 buttons were distributed in six months. Twenty thousand folders for children and adults relating to the care of streets and the collection of waste were also put into circulation.

Former Street Cleaning Commissioner William H. Edwards, of New York, says that four kinds of cooperation are needed by street cleaning departments:

(1) “Cooperation with the force by showing a human interest in the work of the men. This can be done by establishing a pension fund so that when a man has served faithfully for twenty years and has reached the age of 60 or has become incapacitated after he has served ten years, or is injured in the performance of his duty at any time after service has begun so that he is disabled for future service, he can be retired on half pay. This instills in men a keen desire to do better work and permits the Commissioner to retire men who are no longer able to do good work. The danger of street sweepers in busy streets is apparent to any one. More than 2,500 accidents resulting in death or personal injury or damage to property occurred in one year in connection with the New York City Department’s activities. The percentage of killed in the street cleaning force was considerably higher than that in the police force.

(2) “Cooperation of women in the communities in New York. The Women’s Municipal League and other bodies have cooperated with the department. Every year they offer a medal to the sweeper, driver or foreman who does the best all around work.

(3) “Cooperation with citizens. Carelessness up to the present time has added to the work and expense and has been an obstacle to real cleanliness. It must be remembered that before the sweeper can begin that part of the work which is beyond prevention, he must remove the litter carelessly thrown on the street.

(4) “The formation of ordinances for the prevention of this carelessness. If the department has the effective cooperation of the police department and of the magistrates, in the enforcement of the ordinances, then and only then can this particular condition be reduced to a practical minimum. In an attempt to enforce ordinances forbidding the throwing of litter in the streets, New York City in 1915 caused the arrest of 5,400 persons for violating ordinances relating to street conditions of the scattering of refuse. In addition to these arrests in the last three months of the year more than 18,000 formal written warnings were issued for the violation of ordinances.”

Street Cleaning Factors and Standards

The conditions and factors controlling the amount and frequency of cleaning of any pavement, are as follows:

1. Density of horse drawn vehicles and other traffic.
2. Width of street.
3. Character of district and population.
4. Location of streets.
5. Proximity of streets and alleys.
6. Location of public buildings, parks, etc.
7. Kinds and condition of pavement.

A study made by the Chicago Civil Service Commission definitely established that the density of horse traffic, which is the total number of horses passing through a given street divided by the width of the street, is the principal factor which determines the number and frequency of cleanings one street should be given.

The Commission has also learned that there are at least thirty-eight distinct movements which a street cleaner makes in street cleaning work. Of these some have been found to be unproductive, resulting in loss of time and energy and less effective street cleaning. The most important of these, according to the Commission’s report, are as follows: Observation of time wheeling push carts into alleys or other dumping places, disclosing that practically one-fifth of time was consumed in this activity. The study disclosed that some sweepers are more efficient than others, due to the stroke of the broom which they make. The practise of hitting a broom on the pavement is not necessary on dry pavements and very seldom on wet pavements. Effective and practical street cleaning can be obtained by bringing the brush down forcibly at the beginning of each stroke, thus reducing the work at least 15 per cent. The time schedules disclosed that time lost by street cleaners in dodging horses and automobiles where traffic is dense is unappreciable and does not exceed 8 per cent. of the total time in the business district and not more than 2 per cent. of the total time in the outlying district. It is occasioned more through congestion of traffic than through density of traffic. In cleaning light traffic asphalt pavements it was disclosed that after the one morning thorough cleaning three-fourths of the area to be covered during the remainder of the day does not require thorough cleaning. The Commission believes that scoops equipped with rollers would be well adapted for use on light traffic pavements, and with them one man could patrol a much larger pavement area and still keep the pavement in good condition. Time studies of work performed by street laborers working in gangs showed that work done by groups and gangs was not as economical as the division of such work through individual arrangements. Considerable time is lost in conversation. When one man rests every man on the street does the same thing. While working in gangs the good sweeper does no more work than the poorest of the gang. Where it is desired to cover a large area of street with men working in groups rather than in gangs it would be better, the Commission thinks, for each man to have a definite uniform area to cover and to require the foreman to time each individual.

Mr. Edward D. Very, Sanitary Engineer, says that any attempt to estimate the amount of materials which accumulate on a city street must end in failure as the contributing elements vary in different localities in a city and in different cities, and where figures are given they do not really present any valuable data. Some general principles, however, have been determined. The Chicago Commission in its investigation declares that the quantity and volume of dirt attributed to horse drawn vehicle traffic is the most important source of street dirt. The loss of sand and coal and crushed stone, hay, manure and other loose material from poorly constructed vehicles or overloaded vehicles adds greatly to the quantity of street dirt to be removed. Important in a wet season is the dirt carried by moving vehicles through streets and alleys onto hard pavements, but the Commission says that the amount of dirt actually attributable to this source is considerably less than is usually believed. There is also considerable refuse in the form of leaves and grass which accumulates in the residential streets and along boulevards and parks, which has a tendency to lodge in catch basin inlets and stop the free flow of storm water. The quantity of leaves accumulating in the short leaf season on streets far exceeds that which naturally drops onto the surface of streets alone, because of the additional cleaning from lawns and parkway spaces.

Some reports express the belief that when a fixed standard is established of basing street cleaning schedules carefully on density of traffic, condition of pavement, character of frontage and kind of pavement, a definite relation will be found between the amount of street sweepings collected and the number of sweepers employed. In Chicago it has been found that different sweepers average daily collections of quantities varying from three-fourths of a cubic yard to three cubic yards. It has also been noted that street sweepings collected by regular block sweepers average about .0045 cubic feet per square yard. The weight of sweepings will, under ordinary conditions, approximate 36 pounds per cubic foot.

The paving and repair policy of a city is a very important factor in cleaning rates. Comparatively few cities as yet give any thought when selecting a particular pavement as to the relative cost of keeping it clean. It is also a fact that in many cities repair work is neglected at the expense of cleaning.

A smooth, hard surface pavement will cost less to keep clean than one with a rough or uneven surface. A brick pavement, for instance, costs more to keep clean than sheet asphalt. For the same reason a street out of repair is more expensive to clean than one in good repair.

Officials agree that a paving policy should be carried out with a view to having a minimum number of unpaved approaches to existing pavements in order to prevent mud being tracked from the highway to pavement. There is need also of protecting narrow rural pavements from the overflow or tracking of mud that originates on adjacent portions of the same highway.

In a discussion of paving policies and their relation to street cleaning Mr. Hanna says: “The construction and maintenance of pavements that are easy to clean are important and effectual in saving the cost of street administration. Little weight is given to cleaning cost when paving questions are settled and an actual expense of $500 a mile in repairing residence streets would be considered an appreciable item of maintenance, yet that figure for cleaning a mile of residence streets through a season is extremely low. A street cleaner looks upon two qualities in a pavement. It must be smooth and particles of litter must not stick to the surface. The question of smoothness opens up the whole matter of durability. Any material that deteriorates or roughens becomes more difficult each year to clean. Any neglect of needed repairs means a larger cleaning bill until the repairs have been completed. The twofold expense resulting from wear, the cost of repairs plus the increased cost of cleaning should enter into all calculation of expense. Additional calculation of cleaning expense must be made for all bituminous pavements on account of the sticking of particles of litter to the surface. These surfaces are never quite so clean as non-adhesive materials and it costs from 25 per cent. upwards in additional cost to put them in a reasonably presentable condition on account of this quality. This difficulty is seen at its worst in a new creosoted wood block pavement, when the oil is gradually working out between the pores of the wood. The use of steel scrapers must often be employed as the flushing by water is not at all effective in removing the dirt from the surface.

“Substances most easily cleaned that enter into pavements are brick and stone. Neither originates any dirt, and both wash off readily. The only ground for discrimination between them is on the question of smoothness where brick has a slight advantage as a rule. In the use of these materials the choice of a filler is all important. A bituminous filler has all the disadvantages of a bituminous surface. Being softer than the brick or block it recedes, leaving a crevice that invites lodgment of dirt; with edges of brick or block unprotected it is sure to roughen, thus adding to the difficulties of cleaning. Such a street after a few years presents the appearance of cobble stones with the filler invisible or else melted and run to the gutter where it impedes work of follow-up gang.”

Mr. Hanna recommends only a cement grout filler. He says that West 14th Street in Cleveland has a grouted brick pavement ten years old and a traffic of two vehicles a minute. It is cleaned on an average of five times a week, being flushed by night and hand swept by day. The cost of cleaning is almost exactly 15 cents per 10,000 of square feet. This is the lowest figure the city has been able to reach on any type of pavement. Mr. Hanna says that the cost on the best asphalt would not be less than 20 cents and would rise to 30 cents if the surface became wavy or rough. Wood block costs approximately $1.00 a square to clean in its initial condition, and it would be at least two years before oil will have dried out sufficiently to admit its being cleaned for 30 cents a square. Tar filled brick pavement will cost not less than 30 cents a square, and if the filler disappears and the block roughens this cost will amount to 60 cents or more. In the case of a pavement 40 feet wide there are about 21 squares to a mile.

Thus Mr. Hanna points out that as between a material that can be cleaned for 15 cents and one that can be cleaned for 30 cents, there is a difference of $3.15 per mile for cleaning, a difference of $15.75 per week, or $630 per season of 40 weeks—$6,300 in ten years. In Mr. Hanna’s judgment cleaning costs can be greatly reduced by a policy of prompt repair. He believes in the continual patrol of all city streets by men whose duty it is to discover defects in pavement and prescribe repair.

Schedule of Street Cleaning

The unit work must be established and the responsibility of each employee fixed in order to secure an economical administration of street cleaning. This principle is illustrated by the so-called “block system.” By this, each man is allotted to a definite area of pavement to clean, which varies in extent depending upon local conditions as to traffic, physical condition of pavement, location of street, proximity to public buildings, population, paving, alleys, street cars, right of way and frontage of streets.

It is the practise of up-to-date cities to prepare schedules showing the character of pavement, area of pavement, number of cleanings or patrols per week, and the standard of work required of each street cleaner. Changes in these schedules are necessary from time to time on account of climatic conditions, street repair and other necessities. The Chicago Civil Service Commission says that to obtain definite standards of schedules for cleaning streets and alleys and the need of repairing such streets, the routing of teams and vehicles, collecting of city waste, the amount and character and physical condition of all pavements must be obtained.

Pavements are usually classified according to physical character for the purpose of determining the amount and character of cleaning as follows:


Improved—Permanent (a) Smooth pavements, including asphalt, creosote block and bitulithic. (b) Rough pavements, including brick, granite, cobble and rubble and other pavements which require that dirt be picked from interstices.

Improved—Not permanent. All macadam pavements and country roads.

Unimproved pavements. All streets that have not been paved.

The oiling of macadam within the past few years has had an excellent effect on this kind of pavement and has given it the solidity and usefulness almost approaching improved permanent pavements. On macadam surface streets, periodical removal of rough material with hoes, brooms and shovels from street surface and gutters and sprinkling in dry weather with water or oil is about the best that can be done. An analysis in Chicago of the standard of work which one man can perform on an oiled macadam street, indicates that the rate of cleaning one and three-quarters miles of oiled macadam of average width in an eight hour day can be reasonably expected of any man.

Much waste is caused by lack of system in laying out the work and improperly directing the street cleaning gangs and teams. The attached tables give the systems now being used in fifty American municipalities. A study of these will show that some very definite ideas have been developed by street cleaning officials in this country. For example, most cities prefer having patrolmen work singly instead of in gangs.

In making assignments attention should be given to the smallest details, such as correct reports from foremen as to the number of streets swept and loads carted away, and the correct number of sweepers in each street. In many cities three are sent through a street when two would do. Dirt wagons should not be started immediately behind sweeping gangs as it usually takes thirty minutes to an hour before a gang can sweep up enough dirt for a full load. Dirt teams should not start for at least one hour after the sweeper begins. Gangs should have allotted to them enough work to keep them busy until quitting time so that they do not have to kill time. Laxity in any part of the system eats up the department appropriation.

Spring Cleaning

The spring cleaning system usually calls for the piling up and removal of the heavy dirt which is washed from the center of the street and which accumulates in the gutters during the winter season. The experience of cities with such work indicates that the assignment of one man to a definite length of street, or the assignment of a small gang of not exceeding three men, to definite lengths of streets is more effective and economical.

The Chicago Commission says that where a gang of three men is assigned to the work, team work is developed by the use of one man in removing the dirt from the roadway and one man each from the gutters. In the granite and brick pavements considerably more brooming is necessary on the roadway. Granite, brick and cedar block pavements require that the dirt be scraped from the center of the street to the gutter before piling in the gutters can be commenced. The center cleaning rates per man in Chicago are given as follows:

Car Track Outside Car Track
Sq. Yds. per Day Sq. Yds. per Day
Good Asphalt 16,500 18,500
Fair Asphalt 12,900 14,800
Poor Asphalt 9,200 11,100
Good Brick 4,400 5,500
Fair Brick 3,540 3,700
Poor Brick 1,850 2,960
Good Granite 4,400 5,550
Fair Granite 3,340 3,700
Poor Granite 1,850 2,220
Cobblestone 1,470

The single gutter rates in miles per day per man are given as follows:

Times Cleaned per Week Asphalt Good Brick Poor Brick and Granite of All Kinds
2 1.8 miles 1.4 miles 1.4 miles
3 1.4 miles 1.1 miles 0.7 miles
6 0.7 miles 0.5 miles 0.3 miles
9 0.3 miles 0.2 miles
12 0.2 miles 0.2 miles

Chicago has found that the unit cost of spring cleaning of macadam and cedar block streets of different physical condition is as follows:

First Class Condition, Cost for Cleaning 100 Lin. Ft. Fair Condition, Cost for Cleaning 100 Lin. Ft. Poor Condition, Cost for Cleaning 100 Lin. Ft.
Traffic Traffic Traffic
Heavy Light Heavy Light Heavy Light
$1.18 $.90 $1.97 $1.46 $2.25 $1.89

Street Sprinkling

Although many cities sprinkle their streets for dust laying only, it is agreed by all experts and the heads of most street cleaning departments that the use of sprinkling carts for this purpose is of no value, i. e. it is a temporary makeshift and the result is nil. Sprinkling alone does not clean pavements, but only converts temporarily the fine dust into mud, which is a nuisance. It is quite generally agreed, too, that sprinkling is responsible for much repair work on pavements.

The number of times a street is sprinkled daily depends upon weather conditions, nature of pavement and location, and rarely exceeds four trips. Where flushing and squeegeeing are done sprinkling is eliminated entirely.

In Providence, Rhode Island, bituminous pavements are not sprinkled by water. They are kept clean by patrol system and reasonably free from dust. It is the belief of officials of that city that the use of water has an injurious effect on the pavement.

George D. Warren, of Boston, an expert on paving, says that street sprinkling as it is generally practised is worse than a useless expense. He points to the fact that there has been no sprinkling in Providence in seven years on all kinds of pavement, except that water bound pavement is occasionally sprinkled with oil or oil emulsion. If bituminous pavement surfaces are dry and clean the oil which drips from automobiles is quickly spread by auto tires to an extremely thin sheet, which not only preserves the pavement, but the slight amount of oil takes up the fine dust and materially helps to prevent the surface from even becoming dusty.

Mr. Warren believes that while some forms of pavement are doubtless more affected by water and mud than others, sprinkling injuriously affects all classes of pavement. Continuing he says: “I believe that repairs required to all classes of pavement are more generally the result of wetting down the dirt, leaving the surface in a more or less muddy condition than by traffic, or rather what would be traffic under dry cleaning conditions. A city or street in or on which sprinkling or other methods of continual wetting of pavement surface has not been practised is almost usually one where the pavements are the best of their kind. Washington has the enviable reputation of having the most durable pavement of all kinds. For many years the system of cleaning there has been hand patrol without sprinkling, except a very light sprinkling, just enough to lay the dust, not to convert it into mud—immediately in advance of night sweeping.

“Fifth Avenue, New York, is always dry except during rains, and we find one of the most durable asphalt pavements in the world. The pavement is always clean and never dusty.

“Asphalt pavement on Alexander Street, Rochester, New York, laid in 1885, is still in existence and has a record for low cost of repairs, and has until quite recently been free from street sprinkling. It is now rapidly deteriorating.

“Rutger Street, in Utica, New York, laid in 1886, has been through a similar experience of no sprinkling. Michigan Boulevard in Chicago, from Jackson Boulevard to 10th Street, was paved partly with creosoted wood block and partly with asphalt. It was always in a dry condition and carried very heavy traffic for ten years and was in a good condition until about four years ago when it was removed on account of widening the street. The bituminous pavement on Michigan Boulevard is always clean and never cleaned or sprinkled other than by patrol cleaning, except as to narrow strips about four feet wide which are sprinkled and hand broomed at night to remove the slight dust which collects near the curb.”

The Bureau of Municipal Research of Milwaukee reports that in that city 298 miles of street are sprinkled at a cost of $60,310.05. Of this amount $55,104.77 is assessable.

The balance is the city’s portion for public property and street and alley sections which is charged to the general city fund. The city used 275,498,112 gallons of water, costing $28,416.65 including $8,800 for hydrant rental. The average rate of assessment per foot front is about .017¢. In some cities where water is unavailable outside of city limits, or available only for a short time, oil has been used to meet the demands for dust prevention. What seems to be the best is some non-volatile oil that will quickly penetrate the wearing surface of the road incorporating itself with the fine particles so that it forms a dense, smooth, waterproof coating, or else renders the surface dressing so heavy that wind will not hold it in suspension in the air. In addition to this its non-volatile character gives it lasting qualities.

The Milwaukee Bureau of Municipal Research believes that “The service at its best is of no value as it does not clean but only allays dust on the street where in its wet condition it requires a further process of cleaning by the squeegee or flusher and White Wings. If the city had a sufficient amount of modern equipment to clean streets more frequently, the valueless method of sprinkling could be eliminated and an enormous expense saved.”

In some cities street railway companies are required to sprinkle between their tracks and for certain distances on either side of the track. The legal question has several times arisen, whether a Municipal corporation has authority to enact an ordinance to compel railway companies to sprinkle in this way and also whether the particular ordinance in question is reasonable, or so unreasonable as to be void. Generally speaking it has been decided that such an ordinance must be specific, not burdensome, and confined to the company’s tracks, though in one case in Massachusetts, under the statutory powers conferred upon municipal authority, an ordinance requiring sprinkling from curb to curb was sustained. Courts have held that an ordinance providing that “each and every Company or Corporation operating street car lines within the limits of the city of ——— shall water their tracks so as to effectually keep the dust on the same laid,” and provides a penalty for its violation, is neither indefinite nor wanting in uniformity.

The question of sprinkling streets before sweeping has been discussed repeatedly. Following are the methods used in some cities:

New York.—Sprinkling before machines. No sprinkling before hand sweeping.

Chicago.—Sprinkling before sweeping. The Chicago Code of 1911 requires that street car companies shall keep well sprinkled with water in a manner satisfactory to the Commissioner of Public Works, all streets on which they maintain and operate their tracks. They are required to sprinkle such streets twice each day. By another section such street car companies shall clean such portions of streets as lie between the two outermost rails of such tracks and also every additional service as may be prescribed in any railway ordinance relating to or affecting any street.

Philadelphia.—The proposals and specifications for the cleaning of streets, roads, alleys, inlets and markets for 1915, contained the following provision: In addition to the cleaning by blockmen required under these specifications, all streets must be periodically cleaned by machines, the number of weekly cleanings being given in the classification of streets, the remaining machine work shall be done with machine brooms immediately preceded by sprinklers.

St. Louis.—Sprinkling before sweeping is very rarely done, except in the case of certain large sweeping machines used by the city.

Baltimore.—Sprinkles before sweeping.

Pittsburgh.—Principal thoroughfares including all streets in business district cleaned by machine sweepers. Water cart precedes sweeping machine. The cart must never be more than one block ahead of the sweeper.

Washington.—Superintendent of street cleaning gives his opinion that much more effective sweeping can be done without sprinkling and in hand patrol work where dirt is not allowed to collect in any considerable quantity is not necessary. In machine sweeping, however, he finds it necessary to sprinkle with a small amount of water. In cold weather sprinkling is omitted; but at such times many complaints are received on account of dust.

Minneapolis.—In general the orders of the street district commissioners are to sprinkle the streets before sweeping.

Street Cleaning Methods

Four methods are used in American cities for street cleaning, hand sweeping, machine sweeping, flushing by machine and hose and squeegeeing.

All experts advocate the sweeping of streets by hand, commonly called the patrol system. The implements used in patrol cleaning are broom, pan scraper, squeegees, can carrier and cans. The broom is usually one which has a 4 × 18 inch block, filled with split bamboo, rattan, hickory, steel wire or black African bass. The block is usually fitted with a steel scraper. The pan scraper is constructed like a dust pan, turned up sides and back. It is about 36 inches wide by 15 inches deep. The squeegee is a board about 36 inches wide fitted with a rubber strip which extends below the lower edge of the board. Brooms, pan scrapers and squeegees have handles about 66 inches long. The cans are made to hold about three cubic feet of dirt and taper 19 inches in diameter at the top to 17 inches at the bottom. The can carrier has two large wheels and two small, and a platform upon which the can or cans rest.

A new carrier has been devised which carries two cans and is so balanced that the two cans are more easily manipulated than the one. Some cities are now substituting canvas bags for cans.

Whinery says that when street surfaces are of such character as to admit it, hand sweeping is the most effective method.

J. W. Paxton says that hand cleaning work is capable of better distribution than any other method, because more attention can be given to dirtier areas by increasing the number of men who only clean the portions of the street which are dirty and work on those portions until they are clean. There is a fine scum which is not apparent when the pavements are dry but rises up in a thin sheet of mud when moist, making the pavements very slippery. This and fine dust cannot be removed by hand cleaners, but by washing about twice a week in addition to hand cleaning, these troubles can be eliminated.

Very believes that this method of cleaning is fairly effective but is a dust raiser and the ability of the man to cover areas is very limited, especially since the automobile has come into such general use, as it interferes with the sweeper and his work. He says that there are hand machine brooms built on the principle of the carpet sweeper which are not dust raisers and which as a matter of fact do much more effective work. The pan scraper is only valuable to remove manure and mud and coarse litter, and its use should be limited to the time necessary for such work, and the broom used for dust removal.

The area a sweeper can clean depends upon the existence of local conditions. A test was made in New York City for one week and it was found that the area one sweeper was able to clean in a day of eight hours varied from 2,212 square yards to 16,075 square yards, with an average over the whole city of 5,745 square yards. The efficiency division of the Civil Service Commission of Chicago reports: “From an analysis of the findings of the time and motion studies of street cleaners the following table has been deduced, upon which are based the relative difficulty of cleaning different pavements under varying conditions and the standard and equivalent areas to be cleaned by one man in one eight-hour day.”

Pavement Condition Square Yards
Asphalt Good 21,500
Asphalt Fair 19,300
Asphalt Bad 17,200
Creosote Blocks Good 21,500
Brick Good 16,000
Brick Fair 14,400
Brick Poor 12,800
Granite Good 13,400
Granite Fair 12,100
Granite Poor 10,700

In Philadelphia, which cleans its streets by contract, block men are assigned to sections designated by the chief. The area to be covered depends upon the character and amount of traffic. The duties of block men consist in patrolling the areas, gathering all papers and refuse and sweeping dirt as fast as it accumulates, and putting it into dust proof bags ready for loading into special wagons and hauling to a dumping station. The equipment used in hand patrol work consists of hand machines, bag carrier, burlap sacks, push brooms, hand scrapers, special cans and shovels. The dirt collected is placed in sacks and left at convenient points to be collected by special wagons and taken to the dump in sacks, these being returned by the drivers. Sacks are used in preference to cans because of the weight, bulk and noisiness of the latter.

Machine Sweeping

Machine sweeping and cleaning is almost universally condemned, although this method is used in many cities. The machine broom is preceded by a sprinkling cart to loosen the filth and in a measure to prevent the dust rising. This is seldom effected. A broom is found to cover about 40,000 square yards per eight hours. The material is swept into windrows at the side and finally delivered to a windrow in the gutter, where it is picked up. The efficiency of the rotary broom system is considerably reduced because the sweepers meet continual obstructions in busy streets and when operating over paved streets the brooms remove the coarser fragments of dirt only and leave the finer particles on the pavement.

Where the rotary broom is preceded by a street sprinkler, the dust forms into mud and clings to the surface of the pavement, and where the pavement is rough the mud is forced into the joints between paving blocks. As the street becomes dry, the dirt pulverizes and appears again as a dust nuisance. In all but one instance machine sweepers have been dispensed with in Chicago. South Water Street, the heavy wholesale fruit district of the city, is badly congested during the day, which makes it impossible effectively to clean this district by the “block” system. This street becomes very dirty during the day and is covered with a thick layer of dirt and dÉbris at night. In this instance, the broom machines appear to be effective and give fairly good results in the cleaning of this coarse material.

The Chicago Commission believes that the mixing of calcium chloride with the water which is sprinkled in the different sections of the city would greatly add to the effectiveness of street cleaning and eliminating the perils of dust.

According to Very horse drawn brooms of the rotary style are not as effective as the hand broom.

Whinery says, “Sweeping by power sweepers at intervals of one or more days, while less expensive is far less effective and satisfactory than hand sweeping, though if properly done and supplemented by sprinkling with water or oil at intervals sufficiently near together to prevent dust flying it serves a good purpose.”

J. W. Paxton is of the opinion that the machine broom raises so much dust that heavy sprinkling is required. The fine dust mixed with water produces mud which is smeared on the street by the broom and when this becomes dry it turns to dust again. The broom sweeps only the coarser particles and many of these are thrown over the broom by centrifugal force to the pavement again.

In Philadelphia, machine broom cleaning is done in batteries of two or three, preceded by sprinklers, the number of brooms in each battery depending upon the width and character of the streets to be cleaned. The average gang consists of two machine brooms and one sprinkler, and four to seven broomers and a sufficient supply of wagons to remove the refuse, the number depending upon the haul to the dump and season of year, together with amount and character of traffic.

An investigation made by the Milwaukee Bureau of Municipal Research into the cost of rotary broom service brought out the following facts: In industrial and outlying residential section and upon streets adjacent to wharfs, where pavements are constructed of brick, sandstone, limestone or granite, the rotary brooms are usually used. The process is done nightly and to prevent dust, a sprinkler is used in advance of broom.

The following analysis of the cost of operation has been made by the Bureau:

Cost of machine $250.00
Depreciation of 10 per cent. on machine $25.00
Interest at 4½ per cent. 11.25


$36.25
Minor repairs and replacements
6 brooms at 50 lbs. bamboo $20.00
ea. at 8¢. per lb 24.00
48 hrs. labor @ 24¢ hr 12.00 56.00


$92.25
150 days operation $0.615
2 sweepers at $2 per day ea. 4.00
Team and driver per day 5.00
Grease, etc. 0.05

$ 9.665
Average yards cleaned, 40,000
Average cost per 1,000 sq. yds., 24.1
Combined with sprinkler
Sprinkler, team per day $5.00
Water 0.90 5.90

40,000 sq. yds. sprinkled, cost per 1,000 sq. yds 14.7
Broom cost per 1,000 sq. yds 24.1

Combined cost per 1,000 sq. yds 38.8
The assessment per front foot on a street 30 ft. wide and cleaned 50 times a season would be 3.2¢.

To improve on machine sweeping various types of motor pick-up machines have been invented. Most of them have proved of no value. Some, however, are being used by cities with good results on dry, smooth pavement in good repair. Most experts question whether vacuum cleaning will ever be able to remove effectively mud or wet dust. Some experts, however, believe that these pick-up machines will solve the problem of cleaning macadam pavements, as it is the only method that can be employed without serious results. These machines will travel at a rate of four miles an hour, which exceeds the speed attained by any horsepower sweeper.

The experience of Oakland, Cal., with this method of cleaning is interesting. Adjacent to the congested district a suction sweeper had been used for several years. The district had been swept from three to six times a week, by contract, to the satisfaction of the city officials. The department reports that the cost was rather high in comparison with that for rotary sweeping, but that the results were more satisfactory. It cost the city 35¢. per 1,000 square yards to clean with the suction sweeper and 26¢. per 1,000 square yards with the rotary brooms. It had been generally assumed that the patrol system was the most expensive until the Street Commissioner readjusted the routes according to area and traffic. He then found that hand sweeping could be done on streets not swept by rotary brooms at the same cost or not to exceed a ten per cent. increase. He found also that it could be done for much less than cleaning by suction machines. The city has, therefore, entirely superseded this method of cleaning at an estimated annual saving of $3,000 and with much better results.

Pomona, California, found that moisture upon the surface of a pavement or in any form of refuse cannot be lifted by a suction sweeper. Instead it is in effect smeared over the surface of the street. In all cases where the street is dry and the surface of the pavement is reasonably dry the city has found the machine very positive in its operation.

Los Angeles, California, is thoroughly testing the vacuum method of street cleaning following a report by the Efficiency Commission, which has estimated a saving of $65,071 a year if the streets are swept with vacuum cleaners instead of flushed. The report says that supplementary observations and calculations show that the cost of flushing under present conditions is 24.06¢. per 1,000 square yards, and the cost of vacuum cleaning 10.96 cents per 1,000 square yards. These figures include the cost of supervision, maintenance of equipment, workman’s compensation, gutter cleaning and water at cost of production. The cost of operating one of these machines is given by the Milwaukee Bureau of Municipal Research, as follows:

Purchase price $4,000
Depreciation 50 per cent. $2,000
Interest 4½ per cent. 180

$2,180
Repairs (estimated) 25
Replacement of brooms, 30 @ $6 ea. 180
Labor making brooms 60

Yearly cost $2,445
150 days operation, cost per day $16.30
1 Chauffeur $3.00
2 sweepers 4.00
1½ time 2.50
Gasoline and oil 1.25
Water .12 $10.87 10.87


$27.17

From personal observation it was calculated this machine can operate at a speed of four miles per hour and perform work at about 75 per cent. efficiency, or at a cost of 21.4¢. per 1,000 square yards.

The assessment per front foot based on a street 30 feet wide and cleaned 50 times a season would be 1.77 cents.

Raymond W. Parlin, Deputy Commissioner Street Cleaning, New York City, says: “So definite are the needs of the cities for results better than those produced by sweeping that it may be safely prophesied that sweeping in the future will cease to be a primary method of cleaning a modern city and will become an auxiliary to other more efficient methods or used where only rough cleaning is desired.”

Cleaning by Flushing

All authorities agree that whatever method for primary cleaning is adopted, it is important that the street surface be frequently washed by the use of hose, horse drawn flushers, flushing cars, or power squeegees. Reports from cities show that flushing is replacing machine sweeping and that the automobile flusher is becoming popular. The Chief of the Atlanta Sanitary Department favors doing away with sweeping machine and cleaning the streets entirely with flushing machines. He says that sweeping machines are out of date and that flushers are the ideal machines.

The squeegee is a vehicle having a tank and a revolving rubber roller, which washes the pavement as the vehicle moves along the street and the water from the tank is sprinkled in front of the roller. Hose flushing is used in cities having graded streets and sufficient water supply. Street flushers have pressure tanks which depend for their pressure either upon the pressure from the water mains or upon the pressure obtained from a pump operated by a gasoline engine. The latter plan gives the better results.

Whinery is of the opinion that on well paved streets the most efficient and satisfactory method so far devised with the apparatus now available is hand cleaning by the patrol system by day, followed with hose or flushing wagons or scrubbing squeegees during the night. While this is somewhat more expensive than plain machine sweeping he thinks that no other method yet devised will produce equally clean streets at a lower cost.

Gustave H. Hanna says: “The use of flushers has proven not only the cheapest but the most satisfactory method of street cleaning that our experience in Cleveland has been able to develop. Statistics of the department show an average cost of 15.3 cents per square of 10,000 square feet for flushing to which must be added practically 9 cents for pick-up work, a total of some 24 cents per square as against 42 cents for work with White Wings. The White Wings are too convenient and necessary an adjunct to be wholly displaced under any consideration. Down town streets must be swept continually during the day and the hand sweeper with his small cart can also work to advantage in gutters of residential streets collecting dirt that has either been flushed or blown to the curb; but so far as our experience goes, the lessening of cleaning cost by cheaper methods means simply the extension of the use of flushers at every practical point.

“There is an argument of sanitation in favor of flushing. Hand sweeping causes a certain amount of dust and mechanical sweeping usually causes still more. I am opposed to the use of simple sprinkling as a means of laying dust. Ammonia and other products leach out of damp manure and form a scum on the surface that is nearly impossible to remove, and makes pavement slippery and foul smelling.

“Water should also be applied with force enough to carry the refuse to gutter where it should be properly collected with broom and shovel and removed. In Philadelphia flushing machines are used only on poorly paved streets and block pavement. High pressure flushing machines are usually operated similarly.”

Very reports that objection is made to flushing because materials are washed into sewers. The same objection, he says, might be made to hand sweeping, as many sweepers are like housemaids and sweep the dust into the catch basins to make work easy. The material need not reach the sewers if the operator knows his business. Many fear that the action of water when used in flushing will wear away the pavement surface or the joint materials. His answer is that it should, if such a class of pavement or of jointing is allowed to be laid, to expose the paving contractor.

The Chicago Civil Service Commission says that personal inquiry and analysis of reports from cities using flushing machines seem to indicate that the use of flushing machines on rough and smooth pavement and the use of squeegees on smoother permanent pavements have given more effective cleaning than the ordinary block or gang cleaning where it is practicable to make the substitution.

The Milwaukee Bureau of Municipal Research, in its investigation of street cleaning in that city, says the contention of some is that flushing is detrimental to pavement as it removes grout, but such has not been proven in Milwaukee. The one fact that remains uncontradicted is that they clean the streets of every particle of dÉbris and leave the thoroughfares in a sanitary condition; a matter of most vital importance.

In Milwaukee night work is confined to two territories comprising the heavy traffic and commercial territories and each alternating night the streets are flushed. This requires the use of four machines and they operate in a staggered double formation, cleaning the entire area without a return movement. When intersecting streets are encountered, the two rear machines perform the work and then return to the original function. A great deal more territory is thus covered than if machines were paired and each allotted a given area. Day work is performed in like manner except that the remaining four machines are assigned to outlying districts and confined thereto. The following is the cost of operating machine flushers as computed by the Bureau:

Cost of machine $1,500.00
Fixed charges.
Depreciation of 10% on (wagon & tank) $100.00
Depreciation of 25% on engine 125.00
Interest at 4½% 67.50

$292.50
Maintenance
Painting (each season) 20.00
Hose and coupling, each season 15.00 35.00 $327.50


150 days operation—cost per day $2.18

In recommending the flushing process the Milwaukee Bureau says that sprinkling will be greatly reduced, the slippery surface of thoroughfares due to this valueless method will no longer exist, and that a cleaner and more sanitary condition will be the result.

The experience of Scranton, Pa., with flushers is that in going over the streets but once satisfactory results are not obtained. The director of public works says that this has also been found in other cities he has visited where flushers are used. He has concluded that the only practical and efficient way to clean streets is by the use of automobile flushers, one to about one and a half minutes ahead of the other, the first flusher dampening the horse droppings and other material that may stick to the pavement, thus loosening them, and the second flusher sweeping them into the gutter.

Birmingham, Alabama, reports that its experience has been that a great saving and better results are obtained by substituting street flushers for sprinklers and brooms.

Some cities are having success with street railway flushers, among them Cleveland, Scranton, Columbus and New Bedford, Mass. Cleveland furnishes and maintains the flusher cars, pays the cost of operating them, including the wages of employees and the cost of power, but contributes nothing toward fixed charges or for track maintenance or renewal.

Commissioner John T. Fetherston, of New York City, reports that the Mack truck flushing machines which the city put into use during the summer of 1917 are capable, according to preliminary investigation, of cleaning from 100,000 to 120,000 square yards of street per machine per eight hour shift, and that they will do the work with the use of approximately 400 gallons of water per thousand square yards.

Hose Flushing

There is a difference of opinion as to the efficiency of flushing by hose. In Philadelphia all alleys and streets whose width between curbs is too narrow to permit the use of street brooms are cleaned once each week with hose. When additional cleaning is necessary it is done with hand brooms.

Very says that hose flushing is ineffective and uneconomical, and that water does not reach the pavement in such manner as to give full effect and usually is doing no work at all.

One city report makes this comment: “Four or five sweepers hold a hose and play it in some sections as though the object were to wash away the asphalt block pavement and car tracks. Target shooting, with a stream of water, so-called flushing, will never supplant wetting and scrubbing.”

Very also claims that water to be effective must reach the pavement surface in a chisel shape and at a proper angle to remove and carry off the filth. He says that no man is properly constructed to hold the hose at a proper angle with the pavement to obtain the best results for any length of time. Commissioner Fetherston says New York’s experience shows that a hose gang consisting of two men is able to clean well from 23,000 to 25,000 square yards of the dirtiest Belgian block pavement in eight hours, and will clean upward of 30,000 square yards of smooth pavement of modern granite block in the same time, using 2-inch hose, which is that city’s standard size for use with its new hose reels. The amount of water required to clean 1,000 square yards is approximately 1,000 gallons.

Cleaning by Squeegeeing

The squeegee method is used on smooth pavements. Batteries of two and three squeegees are usually preceded by sprinklers, which use as much water as possible without flooding the pavement, while the squeegees use just enough water to create a wash. The idea of sprinkling the pavement is to soften the surface and enable the squeegee to cleanse the street of slime as well as coarser material. Squeegees are followed by men who sweep up windrows of dirt into piles and a sufficient number of carts follow to remove the dirt. In New York where no sprinkling cart is used they average 50,000 square yards per machine per day with the use of 200 gallons of water per one thousand square yards. In Washington with a sprinkling cart they get about 80,000 square yards per machine per day.

Parlin says that squeegeeing produces very effective results with a limited use of water on smooth pavements in good repair.

Very believes that squeegee machines have their value, and if the sprinkler cart is used in advance better results are obtained.

In Milwaukee machines are in constant operation on smooth surface pavements. In certain sections where streets are exceptionally wide, three machines are used in staggered formation and necessitate but one and one-half complete trips over a street to perfect cleaning. They are routed in such a manner that little idle travel is necessary and filling plugs are specified to prevent empty haul to any great extent. The same system is applied to territories where only two machines can be operated, except that four return trips are necessary to complete the work. In no wise are operators allowed to confine their work within a given block unless conditions prevent, but must continue until tanks are emptied, which usually occurs at end of second block. Two laborers are employed with these machines to keep gutters free from dirt and obstructing the water from flowing to the catch basins.

The average area cleaned in one year was 377,712 square yards at a cost of $96.35 per day or 25.5 cents per 1,000 square yards. Of the total yardage of pavement in the city 1,105,324 square yards are free from car tracks and subject to squeegee process. Some are squeegeed twice a week while others are cleaned but once and each have the additional service of White Wings and sprinkler.

The Milwaukee Bureau of Municipal Research gives the cost of squeegeeing as follows:

Cost of machine $1,250.00
Fixed charges
Depreciation and repairs at 10% on machine $111.00
Depreciation & repairs at 50% on roller 70.00
Interest at 4½% 56.25 237.25


Maintenance:
Painting (each season) 20.00
Hose and coupling (each season) 15.00 35.00


Season cost, $272.25
150 days operation, cost per day 1.815
Operation:
Team hire per day 5.00
One sweeper at $2 2.00
Water at 6¢ per 1,000 gal .82


Cost per machine per day $9.635

Manufacturers have placed on the market a modern motor driven squeegee said to be efficient and economical to a city with large area of smooth pavement. The capacity of this tank is increased to 750 gallons (an increase of 200 gallons over horse-drawn machine), which will permit a large area to be cleaned uninterrupted by constant filling, and reduce the lost time at hydrants. There are two sets of sprays, one directly in front of machine and one directly in front of squeegee. Back of the first spray or sprinkler head is a set of two brushes to loosen any hardened matter that might not be subjected to the squeegee process. By using this machine, the employment of laborers to continue the flow of water to catch basins is unnecessary, as the discharge of water is sufficient to remove any slight particles that are removed by the horse drawn equipment. At the end of the season, the machine can be dismantled and a box attached to make it available for other purposes. The cost of operating this style is estimated by the Milwaukee Bureau to be as follows:

Cost of machine $4,000.00
Depreciation and repairs at 25% on machine (one-half chargeable to street cleaning) $481.25
Interest investment 4½% (one-half chargeable to street cleaning) 90.00
One roller per season 85.00

Maintenance: 656.25
Hose, couplings, 4 tires depreciation at 50%
Replacement of two brushes 69.00

Season cost 725.75
150 days operation on street cleaning $4.84
Operation:
1 sweeper per day $2.00
1 chauffeur per day 3.00
Gas and oil 1.82
Water at 6¢ per gal. 1.60

8.42
Daily cost 13.26
Average square yards cleaned per day, 80,000
Cost square yards, 16.5¢
Assessment for foot front based on a street 30 feet wide and cleaned fifty times a season would be $1.37.

This cost data shows motor driven squeegees will perform twice the amount of work as horse drawn at a reduced unit cost. The difference in operating cost of two types would be:

Horse drawn, average cost per 1,000 square yards 25.5¢
Motor driven, average cost per 1,000 square yards 16.5¢

Whinery says that while it is true that flushing methods, if thoroughly used, do carry the removed dust into the sewers or drains, which is regarded by many objectionable and to clog the pipes, this might happen where the whole of the street dirt, coarse and fine, is thus carried together into the sewers. He does not know of any instances where actual trouble has resulted. The practise of cleaning the streets wholly by squeegeeing or flushing is not, however, to be recommended, he believes, if for no other reason than that it would be impracticable to do the work several times each day and thus prevent the formation and flying of dust. The danger of clogging the sewers by flushing dust only into them is, he thinks, very remote, as the quantity of the dust remaining after proper coarse cleaning is small. Careful determination by the New York Commission on Street Cleaning and Waste Disposal showed that on smooth pavements cleaned by the patrol system the accumulation of dust in 48 hours after the street has been washed either by hard rains or by flushing, does not exceed five per cent. or six per cent. of the total daily quantity of street dirt, though on rough stone block pavement it may be much larger. This quantity is so small that its disposal through the sewers could hardly cause serious trouble. In fact, the large volume of water used tends rather to flush and clean out the sewers.

In a paper read before the American Society of Municipal Improvements, Mr. Parlin summarizes as follows the results of a study made by him to determine the economy of the various types of flushing equipment: “Hose flushing on small areas was the most economical method; that up to 40,000 square yards, the horse drawn equipment was next in economy; that from 40,000 square yards to 90,000 square yards the hose was about as economical as the automobile; that from 90,000 square yards to 120,000 square yards automobile was supreme, and for daily schedule areas of over 120,000 square yards the automobile and street car equipment give nearly the same economy.”

The street washing equipment of the future will probably be a combination affair. This has been used in Europe for several years. New York City is now developing combination equipment.

The ideal system of street cleaning would, therefore, be efficient patrol or hand cleaning through the day or during a longer period if the volume of travel in the evening requires it, and thorough scrubbing with squeegees or washing with water under pressure by flushing machines or hose at night as often as may be necessary.

Although the automobile equipment has not been in use long, experience has shown that it is both efficient and economical, particularly in the larger cities.

Disposal of Street Refuse

In most cities the final disposal of sweepings and waste collected from the streets is a troublesome problem, and the cost is no small item in the expenses of the street cleaning department. The majority dispose of the sweepings on city dumps. A few cities are able to dispose of a part of the sweepings from paved streets to farmers and gardeners in the near vicinity on terms that repay at least a part of the cost that would otherwise have to be incurred, but the expense of handling and transporting the material to any considerable distance and its great bulk compared with its commercial value as a fertilizer place a limit on its disposal in this way. Nevertheless, it should be possible in the smaller cities at least to interest farmers and gardeners in the use of this material to a greater extent than is now common and to dispose thus of the sweepings at a price that would reduce the cost of disposal otherwise. The use of street refuse for filling low ground or reclaiming areas of shallow water and marshes has not been so seriously considered as it should be.

In some cities the street dirt is used as a fill between sidewalks and curb or in low alleys and vacant lots which are adjacent to the streets cleaned.

In other cities where the so-called “short haul” system is used, the street dirt is collected from stations at which the street sweepers deposit it, for filling purposes within the ward. The haul seldom exceeds three-quarters of a mile. One mile has been used as a standard for short hauls within wards.

Relative Cost of Street Cleaning

Most experts agree that little can be gained by comparing unit costs in different cities as local conditions and prices paid for labor, etc., vary so widely. Another reason is the lack of uniformity in standards and records maintained in the various cities. And still another reason is the varying standards of cleanliness. Very few cities in considering the sum to be appropriated first determine the standard of cleanliness to be attained. An investigation conducted by the United States Bureau of Census indicated that the unit cost of street cleaning in cities having less than 300,000 inhabitants is less than that in cities having over 300,000.

When the many different methods of record and cost keeping are considered as well as the difficulties encountered in obtaining accurate information as to conditions and methods used in the cleaning of streets, the reasons for these differences are apparent.

The Municipal Journal in January, 1915, printed a table which shows that the average number of cleanings per year in thirty-one of the largest cities was 156, varying from 37½ to 300. The cubic yards of sweepings per year per thousand square yards of street area averaged 20.5, varying from 5.7 to 48; the latter being in Boston and nearly four times that reported from Washington. The average amount of sweepings collected at each cleaning was 191 cubic yards per million square yards cleaned, varying from 32 to 440. The cost per thousand square yards of cleaning done averaged 35½ cents, varying from 14 cents to $1.53. The cost per cubic yard of sweepings averaged $2.70, varying from 79 cents to $8.75.

Table I (a)
STREET CLEANING IN AMERICAN CITIES
Name of City Population Miles of Streets Swept per Year Area in Square Yards Subject to Cleaning
Hand Sweeping Machine Sweeping
By Hand By Machine Total Smooth Rough Macadam Total Smooth and Rough Smooth Rough Macadam Total Smooth and Rough
Buffalo, N. Y. 461,335 9,600 34,000 749,600 7,964,500
Beacon, N. Y. 10,165 1.5 26,400
Binghamton, N. Y. 53,000 2 25.6 27.6 114,829
Cincinnati, Ohio 402,175 20,112 10[1] 254,951
Cambridge, Mass. 110,000 15 108.5 350,000 1,250,000
Chicago, Ill. 2,200,000 4,674,396,308 S.Y. 12,039,859 S.Y. 19,841,482 7,551,053 6,605,237
Camden, N. J. 95,000 2,249,314
Columbus, Ohio 220,000
Cleveland, Ohio 561,000
Cortland, N. Y. 13,000 6
Dunkirk, N. Y. 17,870 26
Denver, Col. 245,523 102,501,230 S.Y. 215,046,848 S.Y.
Elmira, N. Y. 40,093 20,672 41,000
Fall River, Mass. 124,791
Grand Rapids, Mich. 131,000
Hudson, N. Y. 13,000 21.5
Jamestown, N. Y. 38,000 1 30
Kansas City, Mo. 319,000 462.65[2]
Kingston, N. Y. 27,000 4
Los Angeles, Cal. 550,000 333 9,150,000
Louisville, Ky. 224,000 8,331
Lowell, Mass. 106,294
Lynn, Mass. 96,000 35
Lackawanna, N. Y. 17,500 5.5
Little Falls, N. Y. 13,000 6 74,000 5,000 3,000
Milwaukee, Wis. 450,000 82 252.5 1,600,170
Middletown, N. Y. 18,000 4.2 88,235
Mechanicville, N. Y. 8,208 5.
New York City (Manhattan, Bronx & Brooklyn) 4,551,860 1,487 28,429,785 10,391,283
New Orleans, La. 400,000
New Bedford, Mass. 111,000
Newark, N. J. 370,000
Norwich, N. Y. 8,500 6
New Rochelle, N. Y. 35,500 58 4.67 Mi. 47.1 Mi. 6.3 Mi. 25,000
Niagara Falls, N. Y. 45,000 400
Newburgh, N. Y. 27,876
Oakland, Cal. 215,000 4,128 5,160 7,333,000 180,800 187,851
Oswego, N. Y. 24,000 90 412,866 778,374
Ogdensburg, N. Y. 14,388 1–3 10
Philadelphia, Pa. 1,800,000 461 1,165 750,139 3,835,217
Providence, R. I. 248,000
Rochester, N. Y. 248,465 258,171
Rensselaer, N. Y. 11,112
Reading, Pa. 110,000 209,659 squares
Richmond, Va. 160,000 56,820,400 208,031,600
St. Louis, Mo. 835,000 405
San Francisco, Cal. 500,000 460 525,105,551 65,228,812
Salt Lake City, Utah 120,000 30 54
Springfield, Mass. 102,971
Seattle, Wash. 238,000 3,521,624 12,324,340
Scranton, Pa. 130,000
Troy, N. Y. 76,000 40.89 727,112 53,542
Utica, N. Y. 85,000 ½ sq. mi. daily.
Washington, D. C. 360,000 1,513,562 3,682,766 1,584,524
class="brt c021">
1,679,593
Kansas City
Kingston
Los Angeles [9] [9] [9] 10,000,000[6]
Louisville
Lowell
Lynn
Lackawanna 100,000
Little Falls
Milwaukee 4,742,044[10]
Middletown
Mechanicville
New York City 539,611,598 17,300,158 17,300,158 5,273,638 562,184,394
New Orleans
New Bedford
Newark 11,754,257
Norwich
New Rochelle Asphalt, rough block, brick. No. No.
Beacon 1 3 1.75
Binghamton 1 3.00 7 4.50 18 2.00 Brick, concrete, bitulithic. Brick, concrete, bitulithic, macadam. Brick, concrete, bitulithic.
Cincinnati 8 20.00 Wk. 10 3.50–5.00 60 2.19 261 2.25–2.75 6 Macadam and cobble. Macadam and cobble. Sheet, rough block, brick, wood block, bitulithic, bituminous.
Cambridge 2 2.75 8 City teams. 40 2.50 Smooth pavements frequently. Smooth pavements frequently. Smooth pavements occasionally during summer.
Chicago 112 2.60–2.85 165 6.00 1,800 2.35 None. All. None except sidewalks. Sheet asphalt, brick, wood block, concrete, smooth block. Sheet asphalt.
Camden 1 93.32 Mo. 12 20 Yes. Yes. Yes.
Columbus Yes. Yes. Yes.
Cleveland Yes. Yes.
Cortland 1 1.75 3 single. 2.50 4 1.75 Yes.
Dunkirk Brick, asphalt and concrete.
Denver 4 75.00 Mo. 3 2.50 40 5.00 70 2.50
Elmira 1 2.50 5 double 1 single. 4.00 double 3.00 single. 12 1.75 Asphalt and brick. Asphalt, rough block, brick and wood block.
Fall River 1 3.50 4 3.75 57 2.40 Yes. Rough block.
Grand Rapids Yes.
Hudson Brick and macadam.
Jamestown 2 5.50 8 2.00 Brick, wood block, bitulithic asphalt block, bituminous. Yes.
Kansas City 24 75.00 Mo. 3 3.00–3.50 30 5.00 225 2.25 18 All. All. All.
Kingston Yes. Yes.
Los Angeles 1 100.00–125.00 Mo idential, flushing followed by guttermen; business, flushing followed by White Wings. Flushing at night except in winter. Streets not flushed are broomed by gangs. Foremen, drivers, helpers, broom-men and White Wings. 3 men to each route. 844. Yes. Private contract.
Cambridge None. Residential, swept twice year; business, once a week. No. Yes. Yes.
Chicago Supervision by ward superintendent and section foreman. Residential, block system; each man has section to clean. Business the same. 400. 65. No. No.
Camden
Columbus
Cleveland
Cortland Complaints of residents. Yes. 86,133. 4.00.
Dunkirk
Denver Supervision. Residential, sweepers; business, White Wings and flushers. Sweep streets before flushing. According to nature of dirt. No. Yes. 2.25.
Elmira Residential, day flushing and gang picking; business, night flushing and day patrol. 400. No.
Fall River None. Daily patrol in business section; scrap gutters in residential twice a year. Some. 2.65.
Grand Rapids Yes. 236 miles.
Hudson Yes. 358,000 2.10
Jamestown Two routes, north and south side of city. Yes.
Kansas City Monthly, grades by commissioner to civil. Residence, winter, hand sweeping; summer, flushing. Business, service. flush at night. In gangs under foreman and district superintendent. No. Districts. 5,000,000 daily for all flushing except squeegeeing. Yes, some hired. By contract No.
Kingston Yes.
Los Angeles Thorough supervision. Patrol system. Five foremen in 5 districts. Routed all men or assigned to each route to increase from business center out. 4,900. Wagons. Yes. 447 miles, 40? width.
Louisville Yes.
Lowell Residential, patrol; business, patrol and machine sweeping. Foreman, 8 men, two teams in residential. Foreman, 8 men, 2 teams, machine sweeper and sprinkler. Yes. Yes. 2.50.
Lynn By foreman. No. Yes. Yes. 3.04.
Lackawanna Foreman. Sweeper, sprinkler, push brooms. One gang for each ward. No. Yes. 313,550.
Little Falls 7 sweepers with one street superintendent.
New York City City. 7,643,936.74 5,380,620.63
New Orleans City. 322,000.00
New Bedford City. 60,478.81
Newark City. 268,732.54 237,213.15
Norwich City.
New Rochelle City. 37,665.71 34,974.67 2,245.79 445.25 26¢. .027¢.
Niagara Falls City. 118,000.00 20,000.00 10,000.00
Newburgh City. 9,000.00
Oakland Both. $44,663.44 74,951.32 25.969.25[25] 436.75 3881.88[25] .00366[26] .201[23]
Oswego City. 4,231.41 3,226.01 517.79 457.61
Ogdensburg City. 4,428.66
Philadelphia Contract. 1,232.847.00 17.8¢[23] 16¢.[23] 18¢.[23]
Providence City.
Rochester City. 183,783.44
Rensselaer City. 2,740.00
Reading Contract. Three year basis $12.90 per city square, length 540 ft. $35,000 a year.
Richmond City. Not separated from garbage and ash collection.
St. Louis City. 527,000.00 1.25 per Gr. Sq. 92¢. per Gr. Sq.
San Francisco City. 350,400.00 6,000.00
Salt Lake City City.
Springfield City. 243,952.86 .00035 .00017
Seattle City.
Utica

Top of Page
Top of Page