METHODS FOR DISCOVERING OR PROVING THE ORIGIN OF SPECIES. 1. General reflections. As most cultivated plants have been under culture from an early period, and the manner of their introduction into cultivation is often little known, different means are necessary in order to ascertain their origin. For each species we need a research similar to those made by historians and archÆologists—a varied research, in which sometimes one process is employed, sometimes another; and these are afterwards combined and estimated according to their relative value. The naturalist is here no longer in his ordinary domain of observation and description; he must support himself by historical proof, which is never demanded in the laboratory; and botanical facts are required, not with respect to the physiology of plants—a favourite study of the present day—but with regard to the distinction of species and their geographical distribution. I shall, therefore, have to make use of methods of which some are foreign to naturalists, others to persons versed in historical learning. I shall say a few words of each, to explain how they should be employed and what is their value. 2. Botany. One of the most direct means of discovering the geographical origin of a cultivated species, is to seek in what country it grows spontaneously, and without the help of man. The question appears at the first glance to be a simple one. It seems, indeed, that It may also happen that a plant strays from cultivation, even to a distance from suspicious localities, and has nevertheless but a short duration, because it cannot in the long run support the conditions of the climate or the struggle with the indigenous species. This is what is called in botany an adventive species. It appears and disappears, a proof that it is not a native of the country. Every flora offers numerous examples of this kind. When these are more abundant than usual, the public is struck by the circumstance. Thus, the troops hastily summoned from Algeria into France in 1870, disseminated by fodder and otherwise a number of Some collectors and authors of floras are very careful in noting these facts. Thanks to personal relations with some of them, and to frequent references to their herbaria and botanical works, I flatter myself I am acquainted with them. I shall, therefore, willingly cite their testimony in doubtful cases. For certain countries and certain species I have addressed myself directly to these eminent naturalists. I have appealed to their memory, to their notes, to their herbaria, and from the answers they have been so kind as to return, I have been enabled to add unpublished documents to those found in works already made public. My sincere thanks are due for information of this nature received from Mr. C. B. Clarke on the plants of India, from M. Boissier on those of the East, from M. Sagot on the species of French Guiana, from M. Cosson on those of Algeria, from MM. Decaisne and Bretschneider on the plants of China, from M. Pancic on the cereals of Servia, from Messrs. Bentham and Baker on the specimens of the herbarium at Kew, lastly from M. Edouard AndrÉ on the plants of America. This zealous traveller was kind enough to lend me some most interesting specimens of species cultivated in South America, which he found presenting every appearance of indigenous plants. A more difficult question, and one which cannot be solved at once, is whether a plant growing wild, with all the appearance of the indigenous species, has existed in the country from a very early period, or has been introduced at a more or less ancient date. For there are naturalized species, that is, those that are introduced among the plants of the ancient flora, and which, although of foreign origin, persist there in such a manner that observation alone cannot distinguish them, so that historical records or botanical considerations, whether simple or geographical, are needed for their detection. In a very general sense, taking into consideration the lengthened periods with which science is concerned, nearly all species, especially in the regions lying outside the This principle, in its application to each country and each species, presents a number of difficulties; for when a cause is once recognized, it is not always easy to discover how it has affected each particular case. Luckily, so far as cultivated plants are concerned, the questions’ which occur do not make it necessary to go back to very ancient times, nor to dates which cannot be defined by a given number of years or centuries. No doubt the modern specific forms date from a period earlier than the great extension of glaciers in the northern hemisphere—a The question of age, thus limited, may be approached by means of historical or other records, of which I shall presently speak, and by the principles of geographical botany. I shall briefly enumerate these, in order to show in what manner they can aid in the discovery of the geographical origin of a given plant. As a rule, the abode of each species is constant, or nearly constant. It is, however, sometimes disconnected; that is to say, that the individuals of which it is composed are found in widely separated regions. These cases, which are extremely interesting in the study of the vegetable kingdom and of the surface of the globe, are far from forming the majority. Therefore, when a cultivated species is found wild, frequently in Europe, more rarely in the United States, it is probable that, in spite of its indigenous appearance in America, it has become naturalized after being accidentally transported thither. The genera of the vegetable kingdom, although usually composed of several species, are often confined to a single region. It follows, that the more species included in a genus all belonging to the same quarter of the globe, the more probable it is that one of the species, apparently indigenous in another part of the world, has been transported thither and has become naturalized there, by escaping from cultivation. This is especially the case with tropical genera, because they are more often restricted either to the old or to the new world. Geographical botany teaches us what countries have genera and even species in common, in spite of a certain distance, and what, on the contrary, are very different, in spite of similarity of climate or inconsiderable distance. It also teaches us what species, genera, and families are scattered over a wide area, and the more limited extent of others. These data are of great assistance in determining the probable origin of a given species. Naturalized plants spread rapidly. I have quoted examples elsewhere The great abundance of a species is no proof of its antiquity. Agave Americana, so common on the shores of the Mediterranean, although introduced from America, and our cardoon, which now covers a great part of the Pampas of La Plata, are remarkable instances in point. As a rule, an invading species makes rapid way, while extinction is, on the contrary, the result of the strife of several centuries against unfavourable circumstances. The designation which should be adopted for allied species, or, to speak scientifically, allied forms, is a problem often presented in natural history, and more often in the category of cultivated species than in others. These plants are changed by cultivation. Man adopts new and convenient forms, and propagates them by artificial means, such as budding, grafting, the choice of seeds, etc. It is clear that, in order to discover the origin of one of these species, we must eliminate as far as possible the forms which appear to be artificial, and concentrate our attention on the others. A simple reflection may guide this choice, namely, that a cultivated species varies chiefly in those parts for which it is cultivated. The others remain unmodified, or present trifling alterations, When once a cultivated plant has been reduced to such a condition as permits of its being reasonably compared with analogous spontaneous forms, we have still to decide what group of nearly similar plants it is proper to designate as constituting a species. Botanists alone are competent to pronounce an opinion on this question, since they are accustomed to appreciate differences and resemblances, and know the confusion of certain works in the matter of nomenclature. This is not the place to discuss what may reasonably be termed a species. I have stated in some of my articles the principles which seem to me the best. As their application would often require a study which has not been made, I have thought it well occasionally to treat quasi-specific forms as a group which appears to me to correspond to a species, and I have sought the geographical origin of these forms as though they were really specific. To sum up: botany furnishes valuable means of guessing or proving the origin of cultivated plants and for avoiding mistakes. We must, however, by no means forget that practical observation must be supplemented by research in the study. After gaining information from the collector who sees the plants in a given spot or district, and who draws up a flora or a catalogue of species, it is indispensable to study the known or probable geographical distribution in books and in herbaria, and to reflect upon the principles of geographical botany and on the questions of classification, which cannot be done by travelling or collecting. Other researches, of which I shall speak presently, must be combined with 3. ArchÆology and PalÆontology. The most direct proof which can be conceived of the ancient existence of a species in a given country is to see its recognizable fragments in old buildings or deposits, of a more or less certain date. The fruits, seeds, and different portions of plants taken from ancient Egyptian tombs, and the drawings which surround them in the pyramids, have given rise to most important researches, which I shall often have to mention. Nevertheless, there is a possible source of error; the fraudulent introduction of modern plants into the sarcophagi of the mummies. This was easily discovered in the case of some grains of maize, for instance, a plant of American origin, which were introduced by the Arabs; but species cultivated in Egypt within the last two or three thousand years may have been added, which would thus appear to have belonged to an earlier period. The tumuli or mounds of North America, and the monuments of the ancient Mexicans and Peruvians, have furnished records about the plants cultivated in that part of the world. Here we are concerned with an epoch subsequent to the pyramids of Egypt. The deposits of the Swiss lake-dwellings have been the subject of important treatises, among which that of Heer, quoted just now, holds the first place. Similar works have been published on the vegetable remains found in other lakes or peat mosses of Switzerland, Savoy, Germany, and Italy. I shall quote them with reference to several species. Dr. Gross has been kind enough to send me seeds and fruits taken from the lake-dwellings of NeuchÂtel; and my colleague, Professor Heer, has favoured me with several facts collected at Zurich since the publication of his work. I have already said that the rubbish-heaps of the Scandinavian countries, called kitchen-middens, have furnished no trace of cultivated vegetables. The tufa of the south of France contains leaves and other remains of plants, which have been discovered by 4. History. Historical records are important in order to determine the date of certain cultures in each country. They also give indications as to the geographical origin of plants when they have been propagated by the migrations of ancient peoples, by travellers, or by military expeditions. The assertions of authors must not, however, be accepted without examination. The greater number of ancient historians have confused the fact of the cultivation of a species in a country with that of its previous existence there in a wild state. It has been commonly asserted, even in our own day, that a species cultivated in America or China is a native of America or China. A no less common error is the belief that a species comes originally from a given country because it has come to us from thence, and not direct from the place in which it is really indigenous. Thus the Greeks and Romans called the peach the Persian apple, because they had seen it cultivated in Persia, where it probably did not grow wild. It was a We shall see, when we speak of maize, that historical documents which are complete forgeries may deceive us about the origin of a species. It is curious, for it seems to be no one’s interest to lie about such agricultural facts. Fortunately, facts of botany and archÆology enable us to detect errors of this nature. The principal difficulty, which commonly occurs in the case of ancient historians, is to find the exact translation of the names of plants, which in their books always bear the common names. I shall speak presently of the value of these names and how the science of language may be brought to bear on the questions with which we are occupied, but I must first indicate those historical notions which are most useful in the study of cultivated plants. Agriculture came originally, at least so far as the principal species are concerned, from three great regions, in which certain plants grew, regions which had no communication with each other. These are—China, the south-west of Asia (with Egypt), and intertropical America. I do not mean to say that in Europe, in Africa, and elsewhere savage tribes may not have cultivated a few species locally, at an early epoch, as an addition to the resources of hunting and fishing; but the great civilizations based upon agriculture began in the three regions I have indicated. It is worthy of note that in the old world agricultural communities established themselves along the banks of the rivers, whereas in America they dwelt on the high lands of Mexico and Peru. This may perhaps have been due to the original situation of the plants suitable for cultivation, for the banks of the Mississippi, of the Amazon, of the Orinoco, are not more unhealthy than those of the rivers of the old world. A few words about each of the three regions. China had already possessed for some thousands of years a flourishing agriculture and even horticulture, when she entered for the first time into relations with Western Asia, by the mission of Chang-Kien, during the reign of the Emperor Wu-ti, in the second century before the Christian era. The records, known as Pent-sao, written in our Middle Ages, state that he brought back the bean, the cucumber, the lucern, the saffron, the sesame, the walnut, the pea, spinach, the water-melon, and other western plants, Regular communication between China and India only began in the time of Chang-Kien, and by the circuitous way of Bactriana; Regular communications between China and Japan only took place about the year 57 of our era, when an ambassador was sent; and the Chinese had no real knowledge of their eastern neighbours until the third century, when the Chinese character was introduced The vast region which stretches from the Ganges to Armenia and the Nile was not in ancient times so isolated as China. Its inhabitants exchanged cultivated plants with great facility, and even transported them to a distance. It is enough to remember that ancient migrations and conquests continually intermixed the Turanian, Aryan, and Semitic peoples between the Caspian Sea, Mesopotamia, and the Nile. Great states were formed nearly at the same time on the banks of the Euphrates and in Egypt, but they succeeded to tribes which had already cultivated certain plants. Agriculture is older in that region than Babylon and the first Egyptian dynasties, which date from more than four thousand years ago. The Assyrian and Egyptian empires afterwards fought for supremacy, and in their struggles they transported whole nations, which could not fail to spread cultivated species. On the other hand, the Aryan tribes who dwelt originally to the north of Mesopotamia, in a land less favourable to agriculture, spread westward and southward, driving out or subjugating the Turanian and Dravidian nations. Their speech, and those which are derived from it in Europe and Hindustan, show that they knew and transported several useful species. Later, at the time of the crusades, very few useful plants yet remained to be brought from the East. A The discovery of America in 1492 was the last great event which caused the diffusion of cultivated plants into all countries. The American species, such as the potato, maize, the prickly pear, tobacco, etc., were first imported into Europe and Asia. Then a number of species from the old world were introduced into America. The voyage of Magellan (1520-1521) was the first direct communication between South America and Asia. In the same century the slave trade multiplied communications between Africa and America. Lastly, the discovery of the Pacific Islands in the eighteenth century, and the growing facility of the means of communication, combined with a general idea of improvement, produced that more general dispersion of useful plants of which we are witnesses at the present day. 5. Philology. The common names of cultivated plants are usually well known, and may afford indications touching the history of a species, but there are examples in which they are absurd, based upon errors, or vague and doubtful, and this involves a certain caution in their use. I could quote a number of such names in all languages; it is enough to mention, in French, blÉ de Turquie, maize, a plant which is not a wheat, and which comes from America; in English, Jerusalem artichoke (Helianthus tuberosus), which does not come from Jerusalem, but from North America, and is no artichoke. A number of names given to foreign plants by Europeans when they are settled in the colonies, express false or insignificant analogies. For instance, the New Zealand flax resembles the true flax as little as possible; it is merely that a textile substance is obtained from its leaves. The mahogany apple (cashew) of the French West India Isles is not an apple, nor even the fruit of a pomaceous tree, and has nothing to do with mahogany. Sometimes the common names have changed, in Not unfrequently names of plants have been taken by the same people at successive epochs or in different provinces, sometimes as generic, sometimes as specific names. The French word blÉ, for instance, may mean several species of the genus Triticum, and even of very different nutritious plants (maize and wheat), or a given species of wheat. Several common names have been transferred from one plant to another through error or ignorance. Thus the confusion made by early travellers between the sweet potato (Convolvulus Batatas) and the potato (Solanum tuberosum) has caused the latter to be called potato in English and patatas in Spanish. If modern, civilized peoples, who have great facilities for comparing species, learning their origin and verifying their names in books, have made such mistakes, it is probable that ancient nations have made many and more grave errors. Scholars display vast learning in explaining the philological origin of a name, or its modifications in derived languages, but they cannot discover popular errors or absurdities. It is left for botanists to discover and point them out. We may note, in passing, that the double or compound names are the most doubtful. They may consist of two mistakes; one in the root or principal name, the other in the addition or accessory name, destined almost always to indicate the geographical origin, some visible quality, or some comparison with other species. The shorter a name is, the better it merits consideration in questions of origin or antiquity; for it is by the succession of years, of the migrations of peoples, and of the transport of plants, that the addition of often erroneous epithets takes place. Similarly, in symbolic writing, like that of the Chinese and the Egyptians, unique and simple signs The identity of a common name for a given species in several languages may have two very different explanations. It may be because a plant has been spread by a people which has been dispersed and scattered. It may also result from the transmission of a plant from one people to another with the name it bore in its original home. The first case is that of the hemp, of which the name is similar, at least as to the root, in all the tongues derived from the primitive Aryan stock. The second is seen in the American name of tobacco, the Chinese of tea, which have spread into a number of countries, without any philological or ethnographic filiation. This case has occurred oftener in modern than in ancient times, because the rapidity of communications allows of the simultaneous introduction of a plant and of its name, even where the distance is great. The diversity of names for the same species may also spring from various causes. As a rule, it indicates an early existence in different countries, but it may also arise from the mixture of races, or from names of varieties which take the place of the original name. Thus in England we find, according to the county, a Keltic, Saxon, Danish, or Latin name; and flax bears in Germany the names of flachs and lein, words which are evidently of different origin. When we desire to make use of the common names to gather from them certain probabilities regarding the origin of species, it is necessary to consult dictionaries and the dissertations of philologists; but we must take into account the chances of error in these learned men, who, since they are neither cultivators nor botanists, may have made mistakes in the application of a name to a species. The most considerable collection of common names is The filiation of modern European tongues is known to every one. That of ancient languages has, for more than half a century, been the object of important labours. Of these I cannot here give even a brief notice. It is sufficient to recall that all modern European languages are derived from the speech of the Western Aryans, who came from Asia, with the exception of Basque (derived from the Iberian language), Finnish, Turkish, and Hungarian, Basque (or Iberian), the speech of the Guanchos of the Canary Isles, of which a few plant names are known, and Berber, are probably connected with the ancient tongues of the north of Africa. Botanists are in many cases forced to doubt the common names attributed to plants by travellers, historians, and philologists. This is a consequence of their own doubts respecting the distinction of species and of the well-known difficulty of ascertaining the common name of a plant. The uncertainty becomes yet greater in the case of species which are more easily confounded or less generally known, or in the case of the languages of little-civilized nations. There are, so to speak, degrees of languages in this respect, and the names should be accepted more or less readily according to these degrees. In the first rank, for certainty, are placed those languages which possess botanical works. For instance, it is possible to recognize a species by means of a Greek description by Dioscorides or Theophrastus, and by the less complete Latin texts of Cato, Columella, or Pliny. Chinese books also give descriptions. Dr. Bretschneider, of the Russian legation at Pekin, has written some excellent papers upon these books, from which I shall often quote. The second degree is that of languages possessing a literature composed only of theological and poetical works, or of chronicles of kings and battles. Such works Lastly, a third category of dead languages offers no certainty, but merely presumptions or hypothetical and rare indications. It comprehends those tongues in which there is no written work, such as Keltic, with its dialects, the ancient Sclavonic, Pelasgic, Iberian, the speech of the primitive Aryans, Turanians, etc. It is possible to guess certain names or their approximate form in these dead languages by two methods, both of which should be employed with caution. The first and best is to consult the languages derived, or which we believe to be derived, directly from the ancient tongues, as Basque for the Iberian language, Albanian for the Pelasgic, Breton, Erse, and Gaelic for Keltic. The danger lies in the possibility of mistake in the filiation of the languages, and especially in a mistaken belief in the antiquity of a plant-name which may have The other method consists in reconstructing a dead language which had no literature, by means of those which are derived from it; for instance, the speech of the Western Aryans, by means of the words common to several European languages which have sprung from it. Fick’s dictionary will hardly serve for the words of ancient Aryan languages, for he gives but few plant-names, and his arrangement renders it unintelligible to those who have no knowledge of Sanskrit. Adolphe Pictet’s work The plant-names of the Euskarian or Basque language have been considered from the point of view of their probable etymology by the Comte de Charencey, in Les Actes de la SociÉtÉ Philologique (vol. i. No. 1, 1869). I shall have occasion to quote this work, of which the difficulties were great, in the absence of all literature and of all derived languages. 6. The necessity for combining the different methods. The various methods of which I have spoken are of unequal value. It is clear that when we have archÆological records about a given species, like those of the Egyptian monuments, or of the Swiss lake-dwellings, these are facts of remarkable accuracy. Then come the data furnished by botany, especially those on the spontaneous existence of a species in a given country. Each can only lead to probabilities, since we are dealing with facts of ancient date which are beyond the reach of direct and actual observation. Fortunately, if the same probability is attained in three or four different ways, we approach very near to certainty. The same rule holds good for researches into the history of plants as for researches into the history of nations. A good author consults historians who have spoken of events, the archives in which unpublished documents are found, the inscriptions on ancient monuments, the newspapers, private letters, finally memoirs and even tradition. He gathers probabilities from every source, and then compares these probabilities, weighs and discusses them before deciding. It is a labour of the mind which requires intelligence and judgment. This labour differs widely from observation employed in natural history, and from pure reason which is proper to the exact sciences. Nevertheless, when, by several methods, we reach the same probability, I repeat that the latter is very nearly a certainty. We may even say that it is as much a certainty as historical science can pretend to attain. I have the proof of this when I compare my present work with that which I composed by the same methods in 1855. For the species which I then studied, I have now more authorities and better authenticated facts, but my conclusions on the origin of each species have scarcely altered. As they were already based on a combination of methods, probabilities have usually become certainties, and I have not been led to conclusions absolutely contrary to those previously formed. ArchÆological, philological, and botanical data become |