Title: Buffon's Natural History, Volume III (of 10) Containing a Theory of the Earth, a General History of Man, of the Brute Creation, and of Vegetables, Minerals, &c. &c. Author: Georges Louis Leclerc, Comte de Buffon Language: English Character set encoding: ISO-8859-1 E-text prepared by Chris Curnow, Tom Cosmas, |
Note: | Images of the original pages are available through Internet Archive. See https://archive.org/details/buffonsnaturalhi03buff |
CONTAINING
WITH NOTES BY THE TRANSLATOR.
IN TEN VOLUMES.
VOL. III.
PRINTED FOR THE PROPRIETOR,
SOLD AND BY H. D. SYMONDS, PATERNOSTER-ROW.
1807.
T. Gillet, Printer, Wild-Court
Page | ||
History of Animals | 1 | |
Chap. VI. | Experiments on the Method of Generation | 81 |
Chap. VII. | Comparison of my Observations with those of Leeuwenhoek | 134 |
Chap. VIII. | Reflections on the preceding Experiments | 159 |
Chap. IX. | Varieties on the Generation of Animals | 208 |
Chap. X. | On the Formation of the Foetus | 226 |
Chap. XI. | On the Expansion, Growth, and Delivery of the Foetus | 260 |
Recapitulation | 309 |
Chap. I. Of the Nature of Man | 317 |
Chap. II. Of Infancy | 334 |
Page | 88, | Fig. 1, 2, 3, 4, 5, 6. |
106, | Fig. 7, 8, 9, 10, 11, 12. | |
140, | Plate III. | |
148, | Plate IV. |
Aristotle admits, with Plato, of final and efficient causes. These efficient causes are sensitive and vegetative souls, that give form to matter which, of itself, is only a capacity of receiving forms; and as in generation the female gives the most abundant matter, and it being against his system of final causes to admit that what one could effect should be performed by many, he concludes, that the female alone contains the necessary matter to generation; and, as another of his principles was, that matter itself is unformed, and that form is a distinct being from matter, he affirmed that the male furnished the form, and, consequently, nothing belonging to matter.
Descartes, on the contrary, who admitted but a few mechanical principles in his philosophy, endeavoured to explain the formation of the foetus by them, and thought it in his power to comprehend, and make others understand, how an organized and living being could be made by the laws of motion alone. His admitted principles differed from those used by Aristotle; but both, instead of examining the thing itself, without prepossession and prejudice, have only considered it in the point of view relative to their systems of philosophy, which could not be attended with a successful application to the nature of generation, because it depends, as we have shewn, on quite different principles. Descartes differs still more from Aristotle, by admitting of the mixture of the seminal liquor of the two sexes; he thinks both furnish something material for generation, and that the fermentation occasioned by the mixture of these two seminal liquors causes the formation of the foetus.
Hippocrates, who lived under Perdicas, a considerable time before Aristotle, established an opinion, which was adopted by Galen, and a great number of physicians who followed him; his opinion was, that the male and female had each a prolific fluid, and supposed, besides, that there were two seminal fluids in each sex, the one strong and active, the other weak and inactive.[A] That a mixture of the two strongest fluids produce a male child, and of the two weakest a female; so that, according to him, they each contain a male and a female seed. He supports this hypothesis by the following circumstance; that many women, who produce only girls by their first husbands, have produced boys by a second; and that men, who have had only girls by their first wives, have had boys by others. It appears to me, that if even this circumstance could be well established, it would not be necessary to give to the male and female two kinds of seminal liquor for an explanation; because it may easily be conceived, that women, who have brought forth only girls by their first husbands, and produced boys with other men, were only those who furnished more particles proper for generation with their first husband than with the second; or that the second husband furnished more particles proper for generation with the second wife than with the first; for when, in the instant of conception, the organic molecules of the male are more abundant than those of the female, the result will be a male, and when those of the female abounds a female will be produced; nor is it in the least surprising that a man should have a disadvantage in this respect with some women, while he will have a superiority over others.
[A] See Hippocrates, lib. de Genitura, page 129, & lib. de diÆta, page 198, Lugd. Bat. 1665, vol. I.
This great physician supposes, that the seed of the male is a secretion of the strongest and most essential parts of all that is humid in the human body; and he thus explains how this secretion is made: "VenÆ & nervi, he says, ab omni corpore in pudendum vergunt, quibus dum aliquantulum teruntur & calescunt ac implentur, velut pruritus incidit, ex hoc toti corpori voluptas ac caliditas accidit; quum vero pudendum teritur & homo movetur, humidum in corpore calescit ac diffunditur, & a motu conquassatur ac spumescit, quemadmodum alii humores omnes conquassati spumescunt.
"Sic autem in homine ab humido spumescente id quod robustissimum est ac pinguissimum secernitur, & ad medullam spinalem venit; tendunt enim in hanc ex omni corpore viÆ, & diffundunt ex cerebro in lumbus ac in totum corpus & in medullum; & ex ipsa medull proacedunt viÆ, ut & ad ipsum humidum perferatur & ex ipsa secedat; postquam autem ad hanc medullam genitura pervenerit, procedit ad renes, hac enim via tendit per venas, & si renes fuerint exulcerati, aliquando etiam sanguis defertur: a renibus autem transit per medois testes in pudendum, proce dit autem non qua urina, erum alia ipsi via est illi contigua, &c."[B]
[B] See FÆsius's Translation, vol. I. page 129.
Anatomists will no doubt discover that Hippocrates is not correct in tracing the road of the seminal liquor; but that does not affect his opinion, that the semen comes from every part of the body, and particularly the head, because, he says, those whose veins have been cut which lie near the ears only bring forth a weak, and very often an unfertile semen. The female has also a seminal fluid, which she emits, sometimes within the matrix, and sometimes without, when the internal orifice is more open than it should. The semen of the male enters into the matrix, where it mixes with that of the female; and as each has two kinds of fluid, the one strong and the other weak, if both furnish their strong, a male will be the result, and if their weak, a female; and if in the mixture there are more particles of the male liquor than the female, then the infant will have a greater resemblance to the father than to the mother, and so on the contrary. It might here be asked Hippocrates what would happen when the one furnished its weak semen and the other its strong? I cannot conceive what answer he could make, and that alone is sufficient to cause his opinion of two seeds in each sex to be rejected.
In this manner then, according to him, the formation of the foetus is made: the seminal fluids first mix in the matrix, where they gradually thicken by the heat of the body of the mother; the mixture receives and attracts the spirit of the heat, and when too warm part of the heat flies out, and the respiration of the mother sends a colder spirit in; thus alternatively a cold and a hot spirit enter the mixture, which give life, and cause a pellicle to grow on the surface, which takes a round form, because the spirits, acting as a centre, extend it equally on all sides. "I have seen, says this great man, a foetus of six days old; it was a ball of liquor surrounded with a pellicle; the liquor was reddish, and the pellicle was spread over with vessels, some red and others white, in the midst of which was a small eminence, which I thought to be the umbilical vessels, by which the foetus receives nourishment and the spirit of respiration from the mother. By degrees another pellicle is formed, which surrounds the first; the menstrual blood, being suppressed, abundantly supplies it with nutriment, and which coagulates by degrees, and becomes flesh; this flesh articulates itself in proportion as it grows, and receives its form from the spirit; each part proceeds to take its proper place; the solid particles go to their respective situations and the fluid to theirs: each matter seeks for that which is most like itself, and the foetus is at length entirely formed by these causes and these means."
This system is less obscure and more reasonable than that of Aristotle, because Hippocrates endeavours to explain every matter by particular reasons: he borrows from the philosophy of his times but one single principle, which is, that heat and cold produce spirits, and that those spirits have the power of ordering and arranging matter. He has viewed generation more like a physician than a philosopher, while Aristotle has explained it more like a metaphysician than a naturalist; which makes the defects of Hippocrates's system particular and less apparent, while those of Aristotle's are general and evident.
These two great men have each had their followers; almost all the scholastic philosophers, by adopting Aristotle's philosophy, received his system of generation, while almost every physician followed the opinion of Hippocrates; and seventeen or eighteen centuries passed without any thing new being said on the subject. At last, at the restoration of literature, some anatomists turned their eyes on generation, and Fabricius Aquapendente was the first who made experiments and observations on the impregnation and growth of the eggs of a fowl. The following is the substance of his observations.
He distinguished two parts in the matrix of a hen, the one superior and the other inferior. The superior he calls the Ovarium, which is properly no other than a cluster of small yellow eggs of a round form, varying in size from the bigness of a mustard-seed to that of a large nut or medlar. These small eggs are fastened together by one common pellicle, and form a body which nearly resembles a bunch of grapes. The smallest of these eggs are white, and they take another colour in proportion as they increase.
Having examined these eggs immediately after the communication of the cock, he did not perceive any remarkable difference, nor any of the male semen in any one of these eggs; he therefore supposed that every egg, and the ovarium itself, became fruitful by a subtle spirit, which came from the semen of the male; and he says, that in order to secure this fecundating spirit, nature has placed at the external orifice of the vagina of birds a kind of net-work or membrane, which permits, like a valve, the entrance of this seminal spirit, but at the same time prevents it from re-issuing or evaporating.
When the egg is loosened from the common pellicle, it descends by degrees through a winding passage into the internal part of the matrix. This passage is filled with a liquor nearly similar to the white of an egg; it is also in this part that the eggs begin to be surrounded with this white liquor, with the membrane which occasions it, the two ligaments (chalazÆ) which passes over the white, and connects it with the yolk and shell, which are formed in a very short time before they are laid. These ligaments, according to Fabricius, is the part of the egg fecundated by the seminal spirit of the male; and it is here where the foetus first begins to form. The egg is not only the true matrix, that is to say, the place of the formation of the chick, but it is from the egg all generation depends. The egg produces it as the agent: it supplies both the matter and the organs; the ligaments are the substance of formation; the white and the yolk are the nutriment, and the seminal spirit of the male is the efficient cause. This spirit communicates to the ligaments at first an alterative faculty, afterwards a formative, and lastly the power of augmentation, &c.
These observations of Fabricius have not given us a very clear explication of generation. Nearly at the same time as this anatomist was employed in these researches, towards the middle of the sixteenth century, the famous Aldrovandus[C] also made observations on eggs; but as Harvey judiciously observes, he followed Aristotle much closer than experiment. The descriptions he gives of the chicken in the egg are not exact. Volcher Coiter, one of his scholars, succeeded much better in his enquiries; and Parisanus, a physician of Venice, having also laboured on this subject, they have each given a description of the chicken in the egg, which Harvey prefers to any other.
[C] See his Ornithology.
This famous anatomist, to whom we are indebted for the discovery of the circulation of the blood, has composed a very extensive treatise on generation; he lived towards the middle of the last century, and was physician to Charles I. of England. As he was obliged to follow this unfortunate prince in his misfortunes, he lost what he had written on the generation of insects among other papers, and he composed what he has left us on the generation of birds and quadrupeds from his memory. I shall concisely relate his observations, his experiments, and his system.
Harvey asserts that man and every animal proceed from an egg; that the first produce of conception in viviparous animals is a kind of an egg, and that the only difference between viviparous and oviparous is, that the foetus of the first take their origin, acquire their growth, and arrive at their entire expansion in the matrix; whereas the foetus of oviparous animals begins to exist in the body of the mother, where they are merely as eggs, and it is only after they have quitted the body of the mother that they really become foetuses; and we must remark, says he, that in oviparous animals, some hold their eggs within themselves till they are perfect, as birds, serpents and oviparous quadrupeds; others lay their eggs before they are perfect, as fish, crustaceous, and testaceous animals. The eggs which these animals deposit are only the rudiments of real eggs, they afterwards acquire bulk and membranes, and attract nourishment from the matter which surrounds them. It is the same, adds he, with insects, for example, and caterpillars, which only seem imperfect eggs, which seek their nutriment, and at the end of a certain time arrive to the state of chrysalis, which is a perfect egg. There is another difference in oviparous animals: for fowls and other birds have eggs of different sizes, whereas fish, frogs, &c. lay them before they are perfect, have them all of the same size; he indeed observes, that in pigeons, who only lay two eggs, all the small eggs which remain in the ovarium are of the same size, and it is only the foremost two which are bigger than the rest. It is the same, he says, in cartilaginous fish, as in the thornback, who have only two eggs which increase and come to maturity, while those which remain in the ovarium are, like those in fowls, of different sizes.
He afterwards makes us an anatomical exposition of the parts necessary to generation, and observes, that in all birds the situation of the anus and vulra are contrary to the situation of those parts in other animals; the anus being placed before and the vulra behind;[D] and with respect to the cock, and all small birds, that they generate by external friction, having in fact no intermission nor real copulation; with male ducks, geese, and ostriches, it is evidently otherwise.
[D] Most of these articles are taken from Aristotle.
Hens produce eggs without the cock, but in a very small number, and these eggs, although perfect, are unfruitful: he does not agree with the opinion of country people, that two or three days cohabitation with the cock is sufficient to impregnate all the eggs a hen will lay within the year, but admits that he separated a hen from a cock for the space of twenty days, and that all the eggs she laid during that space were fecundated. While the egg is fastened to the ovarium, it derives its nutriment from the vessel of the common pellicle. But as soon as it is loosened from it, it derives the white liquor which fills the passages in which it descends, and the whole, even to the shell, is formed by this mode.
The two ligaments (chalazÆ) which Aquapendente looks on as the shoot produced by the seed of the male, are found in the infecund eggs which the hen produces without the communication with the cock, as in those which are impregnated: and Harvey very judiciously remarks, that those parts do not proceed from the male, and are not those which are fecundated; the fecundated part of an egg is a very small white circle which is on the membrane that covers the yolk, and forms there a small spot, like a cicatrice, about the size of a lentil. Harvey also remarks, that this little cicatrice is found in every fecund or infecund egg, and that those who think it is produced by the seed of the male are deceived. It is of the same size and form in fresh eggs, as in those which have been kept a long time; but when we would hatch them, and when the egg receives a sufficient degree of heat, either by the hen, or artificially, we presently see this small spot increase and dilate nearly like the sight of the eye. This is the first change, and is visible at the end of a few hours incubation.
When the egg has undergone a proper warmth for twenty-four hours, the yolk, which was before in the centre of the shell, approaches nearer to the cavity at the broad end; this cavity is increased by the evaporation of the watery part of the white, and the grosser part sinks to the small end. The cicatrice, or speck, on the membrane of the yolk, rises with it to the broad end, and seems to adhere to the membrane there: this speck is then about the bigness of a small pea, in the middle of it a white speck is discernible, and many circles, of which this point seems to form the centre.
At the end of the second day these circles are larger and more visible; the streak also appears divided by these circles into two, and sometimes three parts of different colours; a small protuberance also appears on the external part, and nearly resembles a small eye, in the pupil of which there is a point, or little cataract; between these circles a clear liquor is contained by a very delicate membrane, and the speck now appears more to be placed in the white than on the membrane of the yolk. On the third day the transparent liquor is considerably increased, as is also the small membrane which surrounds it. The fourth day, a small streak of purple-coloured blood is observed at the circumference of the speck or ball, at a little distance from the centre of which a point may be seen of a blood colour, and which beats like a heart. It appears like a small spark at each diastole, and disappears at each systole; from this animated speck issue two small blood vessels, which these small vessels throw out as branches into this liquor, all of which come from the same point, nearly in like manner as the roots of a tree shoot from the trunk.
Towards the end of the fourth day, or at the beginning of the fifth, the animated speck is so much increased as to appear like a small bladder filled with blood, and by its contractions and dilations is alternatively filled and emptied. In the same day this vessel very distinctly appears to divide into two parts, each of which alternatively impel and dilute the blood in the same manner. Around the shortest sanguinary vessel which we have spoken of a kind of cloud is seen, which, although transparent, renders the sight of this vessel more obscure; this cloud constantly grows thicker and more attached to the root of the blood vessel, and appears like a small globe: this small globe lengthens and divides into three parts, one of which is globular, and larger than the other two; the head and eyes now begin to appear, and at the end of the fifth day, the place for the vertebra is seen in the remainder part of this globe.
The sixth day the head is seen more clearly, the outlines of the eyes now appear, the wings and thighs lengthen, and the liver, lungs, and beak, are distinctly observed; the foetus now begins to move and extend its head, although it has as yet only the internal viscera; for the thorax, abdomen, and all the external coverings of the fore part, of the body are wanting. At the end of this day, or at the beginning of the seventh, the toes appear, the chick opens and moves its beak, and the anterior parts of the body begin to cover the viscera; on the seventh day the chicken is entirely formed, and from this time until it comes out of the egg, nothing happens but only an expansion of those parts it acquired within these first seven days: at the fourteenth or fifteenth day the feathers appear, and at the twenty-first it breaks the shell with its beak, and procures its enlargement.
These observations of Harvey appear to have been made with the greatest exactness; nevertheless we shall point out how imperfect they are, and that he has fallen himself into the error he reproaches others with, making experiments to support his favourite hypothesis, that the heart was the animated speck which first appeared; but before we proceed on this matter, it is but just to give an account of his other observations, and of his system.
It is well known that Harvey made many experiments on hinds and does. They receive the male towards the middle of September: a few days after copulation the horns of the matrix become thicker, and at the same time more lax. In each of the cavities five carunculas appear. Towards the 26th or 28th of the above month the matrix thickens still more, and the five carunculas are swelled nearly to the shape and size of a nurse's nipple; by opening them, an infinity of small white specks are found. Harvey pretends to have remarked, that there was neither then, nor immediately after copulation, any alteration or change in the ovarium, and that he has never been able to find a single drop of the seed of the male in the matrix, although he has made many researches for that purpose.
Towards the end of October, or beginning of November, when the females separate from the males, the thickness of the horns begins to diminish, the internal surfaces of their cavities are swelled, and appear fastened together; the carunculas remain, and the whole, which resembles the substance of the brain, is so soft that it cannot be touched. Towards the 13th or 14th of November, Harvey says, that he perceived filaments, like the threads of a spider's web, which traversed the cavities of the horns and the matrix itself: these filaments shoot out from the superior angle of the matrix, and by their multiplication form a kind of membrane, or empty tunic; a day or two after this tunic is filled with a white, aqueous and glutinous matter, which adheres to the matrix by a kind of mucilage; and in the third month this tunic, or pouch, contains an embryo about the breadth of two fingers long, and another internal pouch, called the amnios, containing a transparent crystalline liquor, in which the foetus swims. The foetus at first was but an animated speck, like that in the egg of a fowl. All the rest is performed in the same manner as that related of the chick; the only difference is in the eyes, which appears much sooner in the fowl than in the deer. The animated speck appears about the 19th or 20th of November, a day or two after which the oblong body, which contains the foetus, is seen; in six or seven days more it is so much formed that the sex and limbs may be distinguished; but the heart and viscera are yet uncovered, and it is two days more before the thorax and the abdomen cover them, which is the last work and completion of the edifice.
From these observations upon hens and deer, Harvey concludes, that all female animals have eggs, that in these eggs a separation of a transparent crystalline liquor contained in the amnios is made, and that another external pouch, the chorion, contains the whole liquors of the egg; that the first thing which appears in the crystalline liquor is the sanguinary and animated spirit; in a word, that the formation of viviparous animals is made after the same manner as oviparous; and he explains the generation of both as follows.
Generation is the work of the matrix, in which no seed of the male ever enters; the matrix conceives by a kind of contagion, which the male liquor communicates to it, nearly as the magnet communicates its magnetic virtue to steel. This male contagion not only acts upon the matrix but over all the female body, which is wholly fecundated, although the matrix only has the faculty of conception, as the brain has the sole faculty of conceiving ideas. The ideas conceived by the brain, are like the images of the objects transmitted by the senses; and the foetus, which may be considered as the idea of the matrix, is like that which produces it. This is the reason that a child has a resemblance to its father, &c.
I shall not follow this anatomist any farther; what I have mentioned is sufficient to judge of his system; but we have some remarks to make on his observations. He has given them in a manner most likely to impose; seems to have often repeated his experiments, and to have taken every necessary precaution to avoid deception; from which it might be imagined he had seen all he writes upon, and observed them with the greatest accuracy. Nevertheless, I perceive both uncertainty and obscurity in his descriptions; his observations are related chiefly on memory; and although he often says the contrary, Aristotle appears to have been his guide more than experience; for he has only seen in eggs what Aristotle has before mentioned; and that most of his observations which may be deemed essential had been made before him, we shall be perfectly convinced if we pay a little attention to what follows:
Aristotle knew that the ligaments (ChalazÆ) were of no service to the generation of the chicken. "QuÆ ad principium lutei grandines hÆrent, nil conferunt ad generationem, ut quidam suspicantur."[E] Parisanus, Volcher, Coiter, Aquapendente, and others, remarked the cicatrice as well as Harvey: Aquapendente supposed it of no use; but Parisanus pretended that it was formed by the male semen, or at least that the white speck in the middle of the cicatrice was the seed of the male which would produce the chicken. "Est-que, says he, illud galli semen alba & tenuissima tunica abductum, quod substat duabus communibus toti ovo membranis, &c." Therefore the only discovery which properly belongs to Harvey is, his having observed that this cicatrice is found in infecund as well as fecundated eggs; for others had observed, like him, the dilation of the circles, and the growth of the white speck; and it appears that Parisanus had seen it much better; this is all which he remarks in the two first days of incubation; and what he says of the third day, is only a repetition of Aristotle's words. [F]"Per id tempus ascendit jam vetellus ad superiorem partem ovi acutiorem, ubi & principium ovi est & foetus excluditur; corque ipsum apparet, in albumine sanguinei puncti, quod punctum salit & movet sese instar quasi animatum; ab eo meatus venarum specie duo, sanguinei pleni, flexuosi, qui, crescente foetu, feruntur in utramque tunicam ambientem, ac membrana sanguineas fibras habens eo tempore albumen continet sub meatibus illis venarum similibus; ac paulo post discernitur corpus pufillum initio, ommino & candidum, capite conspicuo, atque in eo oculis maxime turgidis qui diu sic permanent, sero enim parvi fiunt ac considunt. In parte autem corporis inferiore, nullum extat membrum per initia, quod respondeat superioribus. Meatus autum illi qui a corde prodeunt, alter ad circumdantem, membranam tendit, alter ad luteum, officio umbilici."
[E] Hist. Anim. lib. vi. cap. 2.
[F] Hist. Anim. lib. vi. cap. 4.
Harvey attacks Aristotle for saying that the yolk ascends towards the small end of the egg, and concludes, that he had not seen any thing himself, but had apparently received his information from some good observer of Nature. Harvey was wrong in thus reproaching Aristotle, and in asserting that the yolk always ascends towards the broad end of the egg, for that depends on the position of the egg during the time of incubation, for the yolk always ascends to the uppermost part, as being lighter than the white, whether it be to the broad or the small end. William Langley, a physician at Dordrecht, who made observations on the hatching of eggs, in 1655, twenty years before Harvey, was the first who made this remark.[G]
[G] See Wm. Langley Observ. edÆ a justo Schradero, Amst. 1674.
But to return to the passage we have quoted. By that we see that the crystalline liquor, the animated speck, the two circles, the two blood vessels, &c. are described by Aristotle precisely as Harvey had seen them. This anatomist also pretends that the animated speck is the heart, that this heart is formed the first, and that the viscera and other parts are joined afterwards. All this has been spoken of by Aristotle, and seen by Harvey, and nevertheless it is not conformable to truth. To be assured of this we need only repeat the same experiments on eggs, or only read with attention those of Malpighius,[H] which were made about 40 years after those of Harvey.
[H] Malpighii pullus in ovo.
This excellent observer of Nature examined, with attention, the cicatrice, which is the essential part of the egg; he found it was large in all impregnated eggs, and small in those which were not impregnated; and he discovered in eggs which had never been sat upon, that the white speck, spoken of by Harvey as the first which becomes animated, is a small pouch or ball, which swims in a liquor inclosed by the first circle, and in the middle of this ball he observed the embryo. The membrane of this small pouch, which is the amnios, being very thin and transparent, permitted him easily to see the foetus it surrounded. Malpighius, with reason, concludes, from this first observation, that the foetus exists in the egg before incubation, and that its first outlines are then very strong. It is not necessary to point out how opposite this experiment is to the opinion of Harvey, for he saw nothing of a form for the two first days of incubation, and it was the third day before the sign of the foetus appears, which is the animated speck: whereas according to Malpighius, the outlines of the foetus exist in the egg before incubation has commenced.
After being assured of this important matter, Malpighius examined, with like attention, the cicatrice of unimpregnated eggs, which, as we have observed, is smaller than those which have been impregnated; it has often irregular circumscriptions, and sometimes differs in different eggs. Near its centre, instead of the ball that encloses the foetus, there is a globular mole, which does not contain any thing organized, and which being opened does not present any thing formed or arranged, but only some appendages filled with a thick but transparent fluid; and this unshapen mass is surrounded with many concentric circles.
After six hours incubation the cicatrice is considerably dilated, and the ball formed by the amnios is easily discovered; this ball is filled with a liquor, in the middle of which the head of the chicken and back-bone are distinctly seen. In about six hours more the little animal is seen more distinctly; in another six hours the head is grown larger, and the spine lengthened; and at the end of twenty-four hours the neck begins to lengthen, the vertebrÆ of the back appears of a white colour, and the head to turn to one side. The vertebrÆ are disposed on each side of the spine, like small globules; and almost at the same time the small wings begin to shoot, and the head, neck, and breast are lengthened. After thirty hours nothing new appears, but every part of the little animal is considerably increased, especially the amnios. Around this membrane the umbilical vessels are seen of a darkish colour. At the end of thirty-eight hours, the chicken being grown much larger, its head is large, and in which are distinguished three vessels surrounded with membranes, which also cover the back bone, through which the vertebrÆ are still seen. In forty hours, continues Malpighius, it was wonderful to see the chicken alive, floating in the liquor; the back bone was increased, the head was turned on one side, the vesicles of the brain were less apparent, the first outlines of the eyes appeared, the heart beat, and the circulation of the blood was begun. Malpighius then gives the description of the vessels and course of the blood, and reasonably supposes that, though the heart does not beat before thirty-eight or forty hours incubation, it still existed before that time, like the other parts of the chicken; but on examining the heart in a dark room, he discovered not the least glimpse of light to proceed from it, as Harvey insinuates.
At the end of two days the chicken is seen floating in the liquor of the amnios; in which the head, composed of vesicles, is turned on one side; the back bone and vertebrÆ are lengthened; the heart, which then hung out of the breast, beat three times; for the fluid it contains is impelled into the ventricles of the heart, from thence into the arteries, and afterwards into the umbilical vessels. He remarks, that having separated the chick from the white of the egg, the motion of the heart still continued for a whole day. After two days and fourteen hours, or sixty-two hours of incubation, the chicken, although grown stronger, remained with its head bent downwards in the liquor, contained by the amnios; the veins and arteries were seen among the vessels of the brain; the lineaments of the eyes, and the spinal marrow, also appear extending the length of the vertebrÆ.
At the end of the third day the head of the chicken appeared crooked; besides the eyes five vessels were seen in the head filled with a liquid matter; the first outlines of the wings and thighs were to be distinguished, and the body began to gather flesh; the pupil of the eye, and also the crystalline and vitreous humour were discernible. At the fourth day the vesicles of the brain were nearer each other; the eminences of the vertebrÆ were more prominent, the wings and thighs assumed a greater solidity as they increased in length; the whole body, covered with a jelly-like flesh, was now surrounded within the body by a thin membrane, and the umbilical vessels that unite the animal to the yolk, appeared to come from the abdomen. On the fifth and sixth days the vesicles of the brain began to be covered; the spinal marrow, divided into two parts, began to take solidity and stretch along the trunk; the wings and thighs lengthened; the feet began to spread; the belly was closed up and tumid; the liver was distinctly seen, and appeared of a dusky white; the ventricles of the heart were discerned to beat very distinctly; the body of the chicken was covered with a skin, and the traces of the feathers were visible; the seventh day the head appeared very large, the brain was entirely covered with its membranes; the beak began to appear betwixt the eyes, and the wings, the thighs, and the legs had acquired their perfect figure.
I shall not follow Malpighius any farther, as the remainder relates only to the expansion of the parts till the twenty-first day, when the chicken breaks the shell with its beak; though before that time it is heard to chirrup in its imprisonment. The heart is the last part which receives its proper form, for it is eleven days before the arteries are seen to join, and the ventricles become perfectly conformable and united.
We are now in a condition to judge of the value of Harvey's experiments and observations. There is great appearance this anatomist did not make use of a microscope, which in fact was not brought to perfection in his days, or he would not have asserted there was no difference between the cicatrice of an impregnated and an unimpregnated egg; he would not have said the seed of the male produced no alteration in the egg, especially in the cicatrice; he would not have affirmed that nothing was perceptible till the third day, that the animated speck was the first that appeared, and into which the white speck was changed. He would have seen that the white speck was a ball which contained the whole apparatus of generation, and that every part of the foetus are there from the moment the hen has connection with the cock. He would also have learnt, that without this connection it contains only an unshapen mass, which could never become animated, because in fact it is not organized like an animal, and because it is only when this mass, which we must look upon as an assemblage of the organic particles of the female semen, is penetrated by the organic particles of the male semen, that there results from it an animal, which is formed at the moment, but whose motion is imperceptible till the end of forty hours after: he would not have asserted that the heart is first formed, and that the other parts are joined to it by a juxta-position, since it is evident from Malpighius's observations, that the outlines of every part are all immediately formed, but only appear in proportion as they dilate; on the whole, if he had seen what Malpighius saw, he would not have affirmed that no impression of the male seed remained in the eggs, and that it was only by contagion that they are fecundated, &c.
It is also just to remark, that what Harvey has said on the parts of the generation of a cock is not exact; he asserts that the cock has no genital member, and that there is no intromission; nevertheless it is certain that this animal, instead of one has two, and that they both act at the same time, and which action is a very strong compression, if not a true copulation;[I] and it is by this double organ that the cock emits the seminal liquor into the matrix of the hen.