We have before said that, generally speaking, the greatest mountains are in islands and in the projections in the sea. That in the old continent the greatest chains of mountains are directed from west to east, and that those which incline towards the north or south are only branches of these principal chains; we shall likewise find that the greatest rivers are directed as the greatest mountains, and that there are but few which follow the course of the branches of those mountains. To be assured of this, we have only to look on a common globe, and trace the old continent from Spain to China. We shall find, by beginning at Spain, that the Vigo, Douro, Tagos, and Guadiana run from east to west, and the Ebro from west to east, and that there is not one remarkable river whose course is directed from south to north, or from north to south, although Spain is entirely surrounded by the sea on the It will also be seen, by looking on the map of France, that there is only the Rhone which runs from north to south, and nearly half its course, from the mountains to Lyons, is directed from the east towards the west; but that on the contrary all the other great rivers, as the Loir, the Charantee, the Garonne, and even the Seine, have a direction from east to west. It will be likewise perceived, that in Germany there is only the Rhine, which like the Rhone shapes the greatest part of its course from north to south, but that the others, as the Danube, the Drave, and all the great rivers which fall into them, flow from the west to east into the Black Sea. The Caspian Sea, according to the chart drawn by the order of Czar Peter I. has more extent from the south to the north than from east to west; whereas in the ancient charts it appears almost round, or rather more broad from east to west than from south to north; but if we consider the lake Aral as a part of the Caspian Sea, from which it is separated only by plains of sand, we shall find the length is from the western coast of the Caspian Sea as far as the greatest border of Lake Aral. So likewise the Euphrates, the Persian gulph, and almost all the rivers in China run from west to east; all the rivers in Africa beyond Barbary flow from east to west, or from west to east, and there are only the rivers of Barbary and the Nile which flow from south to north. There are, in fact, great rivers in It may therefore in general be said, that in Europe, Asia, and Africa, the rivers, and other mediterranean waters, extend more from east to west than from north to south, which proceeds from the chains of mountains being for the most part so directed, and that the whole continent of Europe and Asia is broader in this direction than the other; for there are two modes of considering the direction of mountains. In a long and narrow continent like South America, in which there is only one principal chain of mountains which stretches from south to north, the river not being confined by any parallel range, necessarily runs perpendicular to the course of the mountains, that is from east to west, or from west to east; in fact, it is in this direction all the rivers of America flow. In the old as well as the new continent most of the waters have their greatest extent from west to east, and most of the rivers flow in this direction; but yet this similar direction is produced by different causes; for instance, those in In general, rivers run through the centre of vallies, or rather the lowest ground betwixt two opposite hills or mountains; if the two hills have nearly an equal inclination, the river will be nearly in the middle of the intermediate valley, let the valley be broad or narrow. On the contrary, if one of the hills has a more steep inclination than the other, the river will not be in the middle of the valley, but much nearer the hill whose inclination is greatest, and that too in proportion to the superiority of its declivity: in this case, the lowest ground is not in the middle of the valley, but inclines towards the highest hill, and which the river must necessarily occupy. In all places where there is any considerable difference in the height of the mountains, the rivers flow at the foot of the steepest hills, and follow them throughout all their directions, never quitting their course while they maintain the superiority of height. In the length of time, however, the steepest In plains and large vallies, where there are great rivers, the beds are generally the lowest part of the valley, but the surface of the water is very often higher than the ground adjacent. For example, when a river begins to overflow, the plain will presently be inundated to a considerable breadth, and it will be observed that the borders of the river will be covered the last; which proves that they are higher than the rest of the ground, and that from the banks to a Rivers are always broadest at their mouths; in proportion as we advance in the country, and are more remote from the sea, their breadth diminishes; but what is more remarkable, in the inland parts they flow in a direct line, and in proportion as they approach their mouths the windings of their course increase. I have been informed by M. Fabry, a sensible traveller, who went several times by land into the western part of North America, that travellers, and even the savages, are seldom deceived in the distance they are from the sea if they follow the bank of a large river; when the direction of The motion of the waters in rivers is quite different from that supposed by authors who attempt to give mathematical theories on this subject; the surface of a river in motion is not level when taken from one bank to the other, but according to circumstances the current in the middle is considerably higher or lower than the water close to the banks; when a river swells by a sudden melting of snow, or when There are two kinds of ebbings in rivers; the first above-mentioned is a strong power occasioned by the tide, which not only opposes the natural motion of the river, but even forces a contrary and opposite current. The other arises from an inactive cause, such as a projection of land, an island, &c. This does not commonly occasion a very sensible counter-current, yet it is sufficient to impede the progress of boats and craft, and necessarily produces what is called a dead water, which does not flow like the rest of the river, but whirls about in such a manner that when boats are drawn therein they require great strength to get them out. These dead waters are very perceptible at the arches of bridges in rapid rivers. The velocity of the water increases in proportion as the diameter of the channel through which it passes diminishes, the impelling force being the same; The rapidity of running waters does not exactly, nor even nearly, follow the proportion of the declivity of their channels. One river whose inclination is uniform and double that of another, ought, according to appearance, to flow only as rapid again, but in fact it flows much faster. Its rapidity, instead of being doubled, is sometimes triple, quadruple, &c. This rapidity depends much more on the quantity of water and the weight of the upper waters than on the declivity. When we are desirous to hollow the bed of a river, we need not equally We might be inclined to think that bridges, locks, and other obstacles raised on rivers, considerably diminishes the celerity of the water's course; nevertheless that occasions but little difference. Water rises on meeting with any obstacle, and having surmounted it, the elevation causes it to act with more rapidity in its fall, so that in fact it suffers little or no diminution in its celerity, by these seeming retardments. Sinuosities, projections, and islands, also but very little diminish the velocity of the course of rivers. A considerable diminution is produced by the sinking of the water, and, on the contrary, its augmentation increases its velocity; thus if a river is shallow the stream passes slowly along, and if deep with a proportionate rapidity. "The swelling of the Nile, says M. Granger, and its inundations, has a long time employed the learned; most of them have looked upon it as marvellous, although nothing can be more natural, and is every day to be seen in every country throughout the world. It is the rains which fall in Abyssinia and Ethiopia which cause the swelling and inundation of that river, though the north wind must be regarded as the principal cause. 1. Because the north wind drives the clouds which contain this rain into Abyssinia. 2. Because, blowing against the mouths of the Nile, it causes the waters to return against the stream, and thus prevents them from running out in any great quantity: this circumstance may be every season observed, for when the wind, being at the north, suddenly veers to the south, the Nile loses in one day more than it gathers in four." Inundations are generally greatest in the upper part of rivers, because the velocity of a river continues always increasing until it arrives at the sea, for the reasons we have related. On the whole, the theory of the motion of running waters is still subject to many difficulties, nor is it easy to lay down rules which might be applied to every particular case. Experience is here more useful than speculation. We must not only know the general effects of rivers, but we must also know in particular the river we have to do with, if we would reason justly, make useful observations, and draw stable conclusions. The remarks I have above given are mostly new; it is to be wished that others may be collected, and then, possibly, in time, we may obtain a sufficient knowledge of the subject to lay down certain rules to confine and direct rivers, and prevent the ruin The greatest rivers in Europe are the Wolga, which is about 650 leagues in its course from Reschow to Astracan, on the Caspian Sea; the Danube, whose course is about 450 leagues from the mountains of Switzerland to the Black Sea; the Don, which is 400 leagues in its course from the source of the Sosnia, which it receives, to its mouth in the Black Sea; the Dnieper, whose course is about 350 leagues, and which also runs into the Black Sea; the Duine is about 400 leagues in its course, and empties itself into the White Sea, &c. The greatest rivers in Asia are the Hoanho of China, whose course is 850 leagues, taking its source at Raja-Ribron, and falls into the sea of China, in the middle of the gulph Changi: the Jenisca of Tartary, which is about 800 leagues in extent, from the lake Seligna to the northern sea of Tartary; the river Oby, which is about 600 leagues from Lake Kila, to the Northern Sea, beyond the Strait of Waigats. The river Amour, of eastern Tartary, which is about 575 leagues in its course, reckoning it from the source of The greatest rivers in Africa are Senegal, which is 1125 leagues long, comprehending the Niger, which in fact is a continuation of it, and the source of Gombarou, which falls into the Niger. The Nile 970 leagues long, and which derives its source in Upper Ethiopia, where it makes many windings. There are also the Zaira, the Coanza, and the Couma, which are known as far as 400 leagues, but extend much farther; the Quilmanci, whose course is 400 leagues, and which derives its source in the kingdom of Gingiro. It might be said that the course of the river St. Lawrence, in Canada, is more than 900 leagues from its mouth to the lake Ontaro, from thence to lake Huron, afterwards to the lake Alemipigo, and to the lake Assiniboils; the waters of these lakes falling one into another, and at last into St. Lawrence. The river Mississippi more than 700 leagues long from its mouth to any of its sources, which are not remote from the lake of the Assiniboils. The river de la Plata is more than 800 leagues long, from the source of the river Parana, which it receives. The river Oroonoko runs more than 575 leagues, reckoning from the source of the river Caketa, near Pasto, part of which falls into The river Madera, which falls into the Amazons, is more than 660 leagues. To know nearly the quantity of water the sea receives by all the rivers which fall into it, let us suppose that one half of the globe is covered by the sea, and that the other half is land, which is nearly the fact; let us suppose also, that the mediate depth of the sea is 230 fathom. The surface of all the earth being 170,981,012 square miles; and that of the sea 85,490,506 square miles, which being multiplied by 1/4, the depth of the sea gives 21,372,626, cubical miles for the quantity of water contained in the ocean. Now, to calculate the quantity of water which the ocean receives from the rivers, let us take some great river, whose rapidity and quantity of waters are known; for example, the Po, which runs through Lombardy, and waters a tract of land 380 miles long; according to Riccioli, its breadth, before it divides into many trenches, is 100 perches of Boulogne, or 1000 feet, its depth 10 feet, and it runs four miles an hour; therefore the Po supplies the sea with 200,000 cubical perches of water in an hour, or 4 The result of this calculation is, that the quantity of water evaporated from the sea, and which the winds convey on the earth, is about 245 lines, or from 20 to 21 inches a year, or about two thirds of a line each day: this is a very trifling evaporation even when trebled, in order to estimate the water which refalls in the sea, and which is not conveyed over the earth. Mr. Halley, in the Phil. Transactions, page 192, evidently shews, that the vapours which rise above the sea, and which the winds convey over all the earth, are sufficient to supply all the rivers in the world. The most rapid rivers are the Tigris, the Indus, the Danube, the Yrtis, in Siberia, the Malmistra, in Silesia, &c. but, as we have already observed, the proportion of the rapidity of rivers depends upon the declivity and upon the weight and quantity of water; by examining the globe, we shall find that the Danube is much less inclined than the Po, the Rhine, or the Rhone, for the Danube has a much longer course than any of these other rivers, and falls into the Black Sea, which is higher than the All large rivers receive many others in the extent of their course; for example, the Danube receives more than 200 rivulets and rivers; but by reckoning only such as are considerable rivers, we shall find that the Danube receives 31, the Wolga 32, the Don 5 or 6, the Nieper 19 or 20, the Duine 11 or 12; so likewise in Asia the Hoanho receives 34 or 35, the Jenisca 60, the Oby as many, the Amour about 40, the Kian, or river Nankin about 30, the Ganges upwards of 20, the Euphrates 10 or 11, &c. In Africa, the river Senegal receives upwards of 20 rivers: the Nile does not receive any rivers for upwards of 500 miles from its mouth; the last which falls therein is the Moraba, and from this place to its source it receives about 12 or 13 rivers. In America, the river Amazons receives more than 60, all of which are very considerable; the river St. Lawrence about 40, by reckoning those which fall into the lakes; the Mississippi more than 40, the Plata more than 50, &c. There are high countries on the earth, which seem to be points of division marked by nature for the distribution of the waters. In Europe, In the old continent there are about 430 rivers, which fall directly into the ocean, or into the Mediterranean and Black Seas; but in the new continent not more than 145 rivers are known, which fall directly into the sea: in this number I have comprehended only the great rivers, like the Somme in Picardy. All these rivers carry to the sea a great quantity of mineral and saline particles, which Be this as it may, I conceive that the saltness of the sea is not only caused by the banks of salt at the bottom of the sea, and along the coasts, but also by the salts of the earth, which the rivers continually convey therein; and that Halley had some reason to presume that in the beginning of the world the sea had but little or no saltness; that it is become so by degrees, and in proportion as the rivers have brought salts therein; that this saltness is every day increasing, and that consequently, by computing the whole quantity of salt brought by all the rivers, we might attain the knowledge of the age of the world by the degrees of the saltness of the sea. Divers and pearl fishers assert, according to Boyle, that the deeper they descend into the sea, the colder is the water; and that the cold is so intense at considerable depths, that they cannot remain there so long under water, but These circumstances might induce us to presume that the sea is salter at the bottom than at the surface; but we have testimonies which prove the contrary, founded on experiments made to fill vessels with sea water, which were not opened till they were sunk to a certain depth, and the water was found to be no salter than at the surface. There are even some places where the water at the surface is salt, and that There are other places where sulphurous springs and beds of bitumen have been discovered at the bottom of the sea, and on land there are many of these springs of bitumen which run into it. At Barbadoes there is a pure bitumen spring, which flows from the rocks into the sea: salt and bitumen, therefore, are predominant matters in the sea water: but it is also mixed with many other matters; for the taste of water is not the same in every part of the sea; besides, the agitation and the heat of the sun alters the natural taste which the sea should have; and the different colour of different seas, at different times, prove that the waters of the sea contain several kinds of matters, either which it loosens from its own bottom, or are brought thither by rivers. Almost all countries watered by great rivers are subject to periodical inundations, those which are low, and derive their sources from a great distance, overflow the most regularly. The Nile is not the only river whose inundations are regular; the river Pegu is called the Indian Nile, because it overflows regularly every year; it inundates the country for more than 30 leagues from its banks; and, like the Nile, leaves an abundance of mud, which so greatly fertilizes the earth, that the pasturage is excellent for cattle, and rice grows in such great abundance, that every year a number of vessels are laden with it, without leaving a scarcity in the country. "My first care, when I arrived, was to visit the most beautiful cascade that is, perhaps, in nature; but I immediately discovered that Baron la Hontain was deceived so greatly, both in its height and figure, that one might reasonably imagine he had never seen it. "It is true, that if we measure its height by the three mountains you are obliged to ascend in going to it, there is not much abatement to be made of the 600 feet, which the map of M. "Its figure is that of a horse-shoe, and its circumference is about 400 paces; but exactly There is another cataract three miles from Albany, in the province of New-York, whose height is 50 feet perpendicular, and from which there arises a mist that occasions a faint rainbow. In all countries where mankind are not sufficiently numerous to form polished societies, the ground is more irregular, and the beds of rivers more extended, less equal, and often abound with cataracts. Many ages were required to render the Rhone and the Loire navigable. It is by confining waters, by directing their course, and by cleansing the bottom of rivers, that they obtain a fixed and regular course; in all countries thinly inhabited Nature is rude, and often deformed. The number of rivers which lose themselves in the earth is very few, and there is no appearance that they descend very low; it is more probable that they lose themselves, like the Rhine, by dividing among the quantity of sand; this is very common to small rivers that run through dry and sandy soils, of which we have several examples in Africa, Persia, Arabia, &c. The rivers of the north transport into the sea prodigious quantities of ice, which accumulating, form those enormous masses so destructive to mariners. These masses are the most abundant in the Strait of Waigat, which is entirely frozen over the greatest part of the year, The coldest country in the world is Spitzbergen: it lies in the 78th degree of north latitude, and is entirely formed of small peaked mountains; these mountains are composed of gravel, and flat stones somewhat like slate, heaped one on the other; which, it is affirmed by navigators, are raised by the wind, and increase so quick, that new ones are discovered every year. The rein-deer is the only animal seen here, which feeds on a short grass and moss. On the top of these little mountains, and at more than a mile from the sea, the mast of a ship was found with a pully fastened to one of its ends, which gives room to suppose that the sea once covered the tops of these mountains, and that this country is but of modern date; it is uninhabited, and uninhabitable; the soil of these small mountains has no consistence, but is loose, and so cold and penetrating a vapour strikes from it, that it is impossible to remain any length of time thereon. There is also much ice in the seas of North America, as in Ascension Bay, in the Straits of Hudson, Cumberland, Davis, Forbishers, &c. Robert Lade asserts that the mountains of Friezeland are entirely covered with snow, and its coasts with ice, like a bulwark, which prevents any approaching them. "It is, says he, very remarkable, that in this sea we meet with islands of ice more than half a mile round, extremely high, and 70 or 80 fathoms deep; this ice, which is sweet, is perhaps formed in the rivers or straits of the neighbouring lands, In the collection of voyages made for the service of the Dutch East India Company, we meet with the following account of the ice at Nova Zembla:—"At Cape Troost the weather was so foggy as to oblige us to moor the vessel to a mountain of ice, which was 36 fathoms deep in the water, and about 16 fathoms out of it. "On the 10th of August the ice dividing, it began to float, and then we observed that the large piece of ice, to which the ship had been moored, touched the bottom, as all the others passing by struck against without moving it. We then began to fear being inclosed between the ice, that we should either be frozen in or crushed to pieces, and therefore endeavoured to avoid the danger by attempting to get into another latitude, in doing of which the vessel was forced through the floating ice, which made a "During the first watch the ice began to split with an inexpressible noise, and the ship keeping to the current, in which the ice was now floating, we were obliged to cut the cable to avoid it; we reckoned more than 400 large mountains of ice, which were 10 fathoms under and appeared more than 2 fathoms above water. "We afterwards moored the vessel to another mountain of ice, which reached above 6 fathoms under water. As soon as we were fixed we perceived another piece beyond us, which terminated in a point, and went to the bottom of the sea; we advanced towards it, and found it 20 fathoms under water, and 12 above the surface. "The 11th we reached another large shelve of ice, 18 fathoms under water, and 10 above it. "The 21st the Dutch got pretty far in among the ice, and remained there the whole night; the next morning they moored their vessel to a large bank of ice, which they ascended, Wafer relates, that near Terra del Fuega he met with many high floating pieces of ice, which he at first mistook for islands. Some appeared a mile or two in length, and the largest not less than 4 or 500 feet above the water. All this ice, as I have observed in the sixth article, was brought thither by the rivers; the ice in the sea of Nova Zembla, and the Straits of Waigat come from the Oby, and perhaps from Jenisca, and other great rivers of Siberia and Tartary; that in Hudson's Straits, from Ascension Bay, into which many of the North American rivers fall; that of Terra del Fuega, from the southern continent. If there are less on the North coasts of Lapland, than on those of Siberia, and the Straits of Waigat, it is because FOOTNOTES: END OF THE FIRST VOLUME. TRANSCRIBER'S NOTES On page 78, there is one character that may not be visible. It is a superscripted "5". Page ii is blank in the original. Variations in spelling and hyphenation have been left as in the original. The following changes have been made to the original text: Page vi: It would have been singular[original has "singuar"] Page 9: moon, which are the causes of["of" missing in original] it Page 23: these particles[original has "particels"] of earth and stone Page 31: In a word, the materials[original has "mateterials"] of the globe Page 37: has occurred, and in my opinion[original has "oppinion"] very naturally Page 51: These[original has "these"] could not have been occasioned Page 74: in the regions of the sky [original has "fky"] Page 94: that fire cannot[original has "connot"] subsist Page 94: planets at[original has "as"] the time of their quitting the sun Page 97: there will be detached[original has "detatched"] from its equator Page 104: which are as 229 to 230.[period missing in original] Page 155: ARTICLE VI.[original has "VII."] Page 182: conjecture is so much the better[original has "bettter"] founded Page 189: where the pits are very deep[original has "deeep"] Page 192: 23. Sand streaked red[original has "read"] and white Page 194: In plains surrounded[original has "surounded"] with hills Page 198: in France, Flanders, Holland, Spain,[comma missing in original] Italy Page 199: 10 of sand, then 2 feet of["of" missing in original] clay Page 203: either birds or terrestrial animals."[quotation mark missing in original] Page 210: the Alps, and the Apennine[original has "Appenine"] mountains Page 225: time much longer than a year."[quotation mark missing in original] Page 228: formation is novel, in[original has "n"] comparison Page 256: resemblance is perfectly exact."[quotation mark missing in original] [78:A] Vide Newton, 2d edit. page 525.[period missing in original] [177:A] Footnote letter missing in original. [178:A] See the Hist. of New France, by the Pere Charlevoix.[Footnote letter and period missing in original.] [234:A] See Shaw's Voyages, Vol. ii[original has "11"], pages 40 and 41. [240:B] Voyage of Paul Lucus, Vol. II[original has "11"], page 380. [329:A] above the surface of the water.[original has a comma] [330:A] See the Voyages of Lade, vol. ii.[original has "11"] page 305, &. [332:A] Voyage of the Dutch to the North, vol. 1, 3.[original has a comma] Page 49. |