STRYCHNIA AND BRUCIA. Contained in St. Ignatius’s bean—False Angostura bark—Nux Vomica, &c.—Properties of strychnia—Facility of detection. Tests: (1) Microscope—(2) Taste—(3) Color test; ditto in other alkaloids, in bile, and in resinous and saccharine matters—(4) Physiological test (Marshall Hall)—(5) Bichromate of potash—(6) Picric acid—(7) Sulphuric acid and sodium nitrite—(8) Mercuric chloride. Preparations of strychnia: Vermin killers—Battle’s, Gibson’s, Miller’s, Marsden’s, Barber’s, Hunter’s, Keating’s—Brucia—Igasuria—Igasuric acid. Doses of strychnia: medicinal, fatal, recovery—Nux vomica. Fatal period for strychnia—Symptoms in man, commencement of symptoms, if given in powder, in solution, in pills. Explanation of symptoms: by hysteria, tetanus, epilepsy, gritty granules on spinal cord—Angina pectoris. Post-mortem appearances—Treatment—Antidotes—Dr. Taylor’s evidence—Ptomaine—Did Cook die from morphia?—Granular preparations at St. Thomas’s Hospital. Several species of Strychnos, of the natural order LoganiaceÆ, contain, mainly in their seeds, the alkaloids Strychnia and Brucia in the proportion of one to one and a half per cent. The plants yet proved to contain these two alkaloids are:—Strychnos nux-vomica (bark and seeds), Strychnos Ignatia (Faba amara, or St. Ignatius’s bean), Strychnos Tieute (the Upas tree of Java), Strychnos toxifera (main source of woorara or curare, the arrow poison of the South American Indians), and Strychnos Ligustrina and Colubrina —“snakewood”), a tree of Asia. S. potatorum —“clearing nut”) and S. pseudokina are not poisonous. In commerce, “Nux vomica,” “Faba amara, or St. Ignatius’s bean,” “false Angostura bark” (the bark of Strychnos nux-vomica), and an extract called “curare,” are met with. The last is made by mixing the juice of the bark of Strychnos “Faba Amara,” St. Ignatius’s bean, contains 1·2 per cent. Strychnia and some Brucia. “False Angostura Bark” contains Strychnia and Brucia, gives a light yellow powder, intensely bitter, and turned red by nitric acid. Nux Vomica, a flattened circular seed, from half to one inch diameter, generally concavo-convex, with a slight central prominence. Colour greyish-brown; silky from radiating hairs. Substance tough and horny; powder light brown, with an odour like liquorice, and an intense and persistent bitter taste. Nitric acid gives with the powder and with the extract an orange-red colour, owing to the presence of brucia. The aqueous infusion gives a precipitate with tannin, and an olive-green tint with neutral ferric chloride. Strychnia, C21H22N2O2, occurs in commerce in opaque white rhombic prisms (the “right square octahedra” of the British Pharmacopoeia are not met with), inodorous, having a sp. gr. of 1·36. One part of strychnia dissolves in 7000 parts of cold, in 2500 parts of boiling, water; in 1250 parts of ether; in 1000 of carbon disulphide; in 200 of absolute alcohol; in 120 parts of cold, and 10 parts of hot, rectified spirit; in 181 parts of amylic alcohol; in 164 of benzene; and 7 of chloroform. Creasote and essential and fixed oils also dissolve strychnia (Blyth). It sublimes in needle shaped crystals, or sometimes, if too quickly heated, in drops, at 169° C.; melts at 221° C., finally darkening and carbonizing. Its bitter taste is its most prominent physical characteristic. I have verified the statement that one grain of strychnia in a gallon (70,000 grains) of water is distinctly perceptible. One grain in 30,000 is markedly bitter. Its salts are crystallizable, and also bitter, lÆvo-rotatory in solution, mostly colourless, neutral to test-paper, generally soluble with facility in water, hence more rapidly poisonous Separation.—Strychnia is probably the easiest of the alkaloids to detect, on account of its stability and the delicacy of its reactions. One half-millionth of a grain in the pure state is discoverable by the colour tests (Pharm. Journ., July, 1856). Putrefaction does not change it, for Richter detected it in tissues after eleven years (Sammlung Klin. VortrÄge, 69, 562), and other observers in decomposed or buried bodies after five to eight weeks. And yet there are few analysts who have not on some occasion failed to find it (see p. 147.) A very small quantity, about a grain, may destroy life. Even of this, only a portion is absorbed; the rest is eliminated by vomiting (when it occurs), and by the urine and fÆces; the absorbed portion is diffused with great rapidity through a large mass of blood and tissue; the result is that we are looking for one part of the poison in about a million times its weight of impurities—almost worse than the needle in the haystack. Matters are still more difficult if the theory be true that an alkaloid, in killing, itself suffers change (see pp. 128 and 133)—an idea that Dr. Letheby and Mr. Nunneley strongly repudiated in the Palmer defence, though the latter witness had to admit that he himself had once failed to detect strychnia in an animal to which he had administered it. Dragendorff records several negative results without apparent cause. Taylor (Med. Jur., 1873, Vol. I., 414) mentions cases of non-discovery by Dr. Reese of Philadelphia, Mr. Horsley of Cheltenham, by himself in the organs of an animal hypodermically poisoned; and also a case in which five grains had However this be, if the stomach has failed to yield strychnia, the whole of the rest of the organs, the blood, and the muscles—in fact, as much of the body as can be managed—should be extracted with hot redistilled methylated spirit acidified with a little acetic acid. It is easy to fit up an arrangement with a stoneware pan, a wooden cover, and a coil of tin pipe, through which steam can be passed, and thus the alcohol can be kept warm for two or three hours without much loss. Strain the whole through a cloth, distil off most of the alcohol, evaporate on a water bath at about 70° C., and treat the extract as described in the general process for alkaloids. To facilitate the purification, the alcoholic solution may be precipitated by acetate of lead (avoiding much excess), filtered, the lead removed from the filtrate by adding sufficient sulphate of potash in solution and allowing it to settle, and the clear liquid evaporated as before. Much syrupy matter, which occasions trouble, is thus removed. The ether-chloroform solution (p. 5), by spontaneous evaporation, leaves the strychnia in “rosettes, veined leaves, stellate dotted needles, circles with broken radii, and branched and reticulated forms” (Guy and Ferrier, Forens. Med., 1881, 568). If not yet pure enough to crystallize, advantage may be taken of the fact that while most of the impurities are charred by warm concentrated sulphuric acid, strychnia is very little affected. A few drops of this acid are therefore added to the residue, then it is warmed for ten or fifteen minutes on the water-bath, finally diluted to about ten cubic centimetres, filtered, the filter washed with water, and the filtrate treated again with ammonia and ether-chloroform. The residue left by the latter, on spontaneous evaporation, will now be pure enough for the following Tests.—1. The microscopic appearances are so various as 2. Dissolve in water with a trace of acid, and divide on several watch-glasses, as described in the introduction. If one portion be cautiously tasted, and there be no bitterness, strychnia is very improbable. 3. Proceed at once to the colour test. Transfer a portion of the residue, dissolved in a drop of acetic acid, to a white porcelain dish or plate; dry gently on the water-bath; moisten it with about two drops of pure concentrated sulphuric acid; strychnia gives no coloration; with the point of a knife place a minute quantity of finely-powdered peroxide of manganese (the precipitated hydrate is often recommended, but the natural peroxide answers better, being more gradual in its action) on the side of the dish; slant the dish so as to allow the liquid to come in contact with the powder. At the moment of contact a deep rich blue colour is produced if 1/20000th of a grain of strychnia be present. The blue colour rapidly changes into purple, crimson, rich red-brown, then fades into bright orange-red, which last tint remains for some hours. By cautiously stirring with a glass rod, the succession of colours can be brought out again at another spot. One or two other qualified observers should always be summoned to witness the experiment, for two reasons; first, that they may testify at the trial, if necessary, to the certainty of the conclusion; secondly, because the sense of colour is differently developed in different people, and, if the hues are faint, one is apt to imagine what one expects to find. But if two or three, without prompting, see the same appearances, the chance of error is removed. Applied in this way, the succession of colours is absolutely peculiar to strychnia. But, as objections have been made (a) Curarine (from Strychnos toxifera) has a bitter taste, is almost insoluble in ether and chloroform; hence it is not usually extracted by the above alkaloidal process, but remains behind in the aqueous liquid. With sulphuric acid and peroxide of manganese it gives the same colours as strychnia, but the changes are slower. With sulphuric acid alone, it yields a pale violet colour, changing to dirty red, and finally to rose. Its physiological effects are opposite to those of strychnia—so much so that it has been proposed as an antidote. (b) Pyroxanthine (a rare substance, obtained in very small quantity from wood spirit), salicine (from the willow), and piperine (from pepper), give with sulphuric acid alone a deep-red colour, destroyed or spoilt by peroxide of manganese. (Nunneley, in Palmer’s trial.) (c) If sugar and bile should be present together, sulphuric acid will develope a purple colour very like the strychnia test. Bile would also give bitterness. But it must be remembered that bile, without sugar, will not give the colour, that sugar will not be extracted by the ether-chloroform, and that the colour will appear immediately on the addition of the acid alone, whereas strychnia remains then uncoloured. (d) Many resinous and saccharine matters are coloured by sulphuric acid, but can be got rid of by warming with the acid as described above. So that none of these can be mistaken for strychnia. This important test depends upon the action of nascent oxygen; hence any substance which yields oxygen will give the colours more or less satisfactorily. Bichromate of potash, potassium ferricyanide, peroxide of lead, peroxide of cerium (Sonnenschein), have been employed, but most of them give colours of their own, and none are so good as peroxide of manganese. It is only necessary that the manganese should be finely pounded and not too much added. The action is slower and more lasting than with bichromate. Letheby’s galvanic test is interesting, and has the advantage of not introducing any extraneous substance into the matter under examination, so that another alkaloid can be tested for afterwards. I have found it better to place the drop of supposed strychnia solution, acidified with a drop of dilute sulphuric acid (10 per cent. strength) on a white plate, to place on its opposite sides two small pieces of platinum foil pressed closely against the plate, touching the drop, and approaching within a quarter of an inch of one another, and to touch them simultaneously with the terminals of a battery of two Grove’s or other cells. In the region of the positive terminal the same colours manifest themselves as with peroxide of manganese. If no colour is shown at once, the battery should be removed, as further galvanic action may decompose any other alkaloid that may be present. The test is not so delicate as sulphuric acid and peroxide of manganese. It is said that the presence of much morphia will interfere with the above test. But morphia, again, is not extracted completely by the ether-chloroform; and I have not found it to hinder the reaction if performed carefully. Brucia in ordinary quantities, quinine, cinchonine, veratrine, and santonine do not interfere. In strychnia poisoning, morphia should always be sought for, as it is used as an antidote. If found, its interference may be obviated thus. Dissolve the supposed strychnia in water with a little acetic acid, add an equal volume of ether, and then ammonia in slight excess, and shake well. The strychnia will dissolve in the ether, the morphia will remain in the aqueous liquid. On evaporating the ether, the strychnia will be isolated. 4. Dr. Marshall Hall’s physiological test is very delicate. With some small animal—preferably a frog—proceed as mentioned in the introduction (p. 6). Tetanic spasms are caused. But other poisons, ptomaines, and even the mechanical injury, may produce irritation and perhaps convulsions, so that the test is dangerous, except as confirmatory or negative. 5. Bichromate of potash solution gives with strychnia, at once or on standing, a yellow precipitate, appearing under the 6. A sublimate of strychnia touched with a drop of dilute picric acid solution, strength 1 in 250, gives microscopic arborescent crystallizations of peculiar curved forms. (Ibid.) 7. Treated with concentrated sulphuric acid and then with a crystal of sodium nitrite, strychnia gives a dirty yellow colour, changed by an alcoholic solution of potash to a fine orange-red, by an aqueous solution to brownish green, and finally to dirty red-brown. (Arnold, Arch. d. Pharm. 3, 20, 561.) 8. Mercuric chloride produces a white precipitate, as also does potassium sulphocyanide. All the general reagents for alkaloids precipitate strychnia. If, however, the reaction with sulphuric acid and manganese have come out properly, all the other tests are superfluous; if it has not been obtained, none of the other tests will be of use. Preparations.
Vermin Killers. 1. Battle’s seems to vary in composition. Tardieu found in a packet of 19 grains, 1½ grain of strychnia, or 7·7 per 2. Butler’s contains flour, soot, and about 5 per cent. strychnia. Sometimes it contains Prussian blue, and sometimes carbonate of barium in place of strychnia. 3. Gibson’s contains half a grain of strychnia in each powder. 4. Miller’s Rat Powder contains oatmeal, and about 6 per cent. of nux vomica (equal to 0·023 strychnia and 0·067 brucia). (Blyth, Man. of Prac. Chem. p. 317.) 5. Marsden’s Vermin and Insect Killer: one packet contains ¾ grain strychnia. (Lancet, April 19, 1856.) 6. Barber’s “Magic Vermin Killer Powders” weigh 28 grains and contain 10 per cent. of strychnia. “Hunter’s Infallible” also contains it. In Keating’s Insect Powder I have found no strychnia nor arsenic. BRUCIA. C23H26N2O4,4H2O, is probably derived from strychnia by the substitution of two molecules of methoxyl (CH3O) for two atoms of hydrogen (Shenstone, Chem. Soc. Journal, Feb., 1883), hence might be named dimethoxystrychnia. But efforts to change it into strychnia have, as yet, been unsuccessful. All plants containing strychnia contain also brucia. In false Angostura bark the latter much predominates. It occurs in needles or 4-sided monoclinic prisms (rarely in tables), colourless, intensely bitter, lÆvo-rotatory to a less extent than strychnia, but more soluble in water, alcohol, &c., hence remaining in the mother liquors in the preparation of strychnia. Insoluble in pure ether. It melts at 151° C. (Blyth), and produces a scanty amorphous sublimate near its temperature of decomposition. The salts With the general reagents for alkaloids brucia gives precipitates. With concent. nitric acid it gives a deep-red colour, changing to orange, and finally to yellow. A trace of stannous chloride (protochloride of tin) turns the red solution purple: excess bleaches it. Concent. sulphuric acid, followed by bichromate of potash, gives with brucia a red-brown colour passing to green and yellow (Guy). Whenever strychnia is found, brucia should also be looked for. Igasuria, a supposed third alkaloid of the Strychnos tribe, has been shown by Shenstone to be a mixture of strychnia and brucia (Chem. Soc. Journal, Sept. 1881, p. 457). Strychnic or Igasuric Acid, obtained by Pelletier and Caventun from Nux Vomica and from St. Ignatius’ Bean, is probably identical with malic acid. DOSES. Medicinal dose of strychnia 1/30 to 1/12 grain. Fatal dose: smallest recorded ½ grain (Dr. Warner, “Poisoning by Strychnia,” p. 138), ¼ grain (Guy; also case of Agnes Sennett, p. 121, ante), but a child of two or three years was Recovery has taken place after 3 grains (Taylor), 4 grains (Lancet, 1863, i. 54), 3 to 7 grains (Husemann), 7 grains (Med. Gaz., xli., 305), “20 grains or more” (? Guy and Ferrier’s Forens. Med., 1881, p. 574), 40 grains (Med. Times and Gaz., 1865, p. 267). If these statements are correct, they must be accounted for either by vomiting, early and vigorous treatment, or impurity of the alkaloid. Poisonous symptoms have sometimes occurred in adults, and frequently in children, from medicinal doses. Fatal close of nux vomica: of the powder, 30 grains is the smallest (= ? grain strychnia), (Hoffmann, Med. Rat. System, 2, 175), of the alcoholic extract, 3 grains (Christison on Poisons, p. 642). Brucia is not used in medicine. Fatal dose rather uncertain, probably three to ten grains. Fatal Period for Strychnia:—Shortest, five minutes (Dr. Gray on Strychnia, 1872, p. 55); longest, six hours after three grains (Taylor, Guy’s Hosp. Reports, Oct., 1857, p. 483); average, two hours. For nux vomica:—Shortest, fifteen minutes; longest, three hours or more (Guy); average, two hours (Taylor), one hour (Guy). Symptoms commence at various intervals after taking, according to dose, form, and constitution. The beginning may be (1) almost immediate (Mad. Merghelynk, 1870, Taylor’s Med. Juris., p. 408), (2) in five minutes (case of Dr. Warner, also Dr. Gray on Strychnia, 1872, p. 55), (3) in fifteen minutes (trial of Dove, p. 242), (4) about an hour (Palmer’s trial, p. 102), (5) forty minutes (Lond. Med. Repository, xix., 448), up to two and a half hours (Wormley, Microchemistry of Poisons, p. 538). Hence no conclusion can safely be drawn from this feature (see Dr. Letheby’s evidence in the Palmer trial, p. 166). Probably Dr. Todd’s statement in the same trial is the most correct average:—“Symptoms in ten minutes, if in solution and a large dose; otherwise in a half to one hour.” The different action of powder and solution is shown in the following experiments on two full-grown rats:— 1. Half a grain of powdered strychnia—First convulsion in twenty minutes, death in two and a half hours. 2. Same quantity dissolved in sufficient acid—Effect almost immediate; death in half an hour. In the stomach, liver, and brain, strychnia was separately detected. Pills, especially if hard, would be very slow in action. The most intense effect is produced by hypodermic injection. Symptoms in Man:—Bitter taste in the mouth, feeling of suffocation, jerkings and twitchings of head and limbs, then tetanic convulsions of nearly all the muscles. Body stretched out stiff, finally arched back so as to rest on the head and the heels (opisthotonos), spasmodic and difficult breathing, usually a peculiar grin (risus sardonicus). After a time the jaw becomes tightly fixed (trismus or lockjaw), the fingers are clenched, the feet arched inwards (incurvated), the eyes prominent and staring. The spasm lasts from a half to two minutes, then there is an interval of comparative rest. The pupils are generally dilated during the fit, contracted in the interval. A touch, a change of position, or a sudden noise, will usually cause a renewal of the spasm. In severe cases the convulsions recur at diminishing intervals, increasing in violence till death occurs from exhaustion or suffocation. Vomiting is very rare. Taylor says “the jaw is not always fixed during a paroxysm: the patient can frequently speak and swallow” (Med. Juris., 1873, p. 404). Woodman and Tidy (Forens. Med., 1877, p. 330) say that this symptom is invariably present. Guy and Ferrier are cautious, and state that the effort to drink often causes rigid spasms of the jaw, but that the “jaw is not always fixed, even in the fit” (Guy and Ferrier’s Forens. Med., 1881, p. 573). On the whole, fixing of the jaw is usual but not invariable. In the Palmer and Dove trials the patients spoke or shrieked during the paroxysms. As to impatience of touch, Mr. Morley’s dictum in the Dove trial expresses the truth: “Not shrinking from touch is Consciousness, in the immense majority of cases, is preserved to the last. If, as in Mrs. Dove, insensibility occurs, it is due to the exhaustion. In this trial Dr. Christison said “it is unusual to be insensible before death from strychnia.” Farquharson (Therapeutics, p. 264) states that “the cerebral functions remain unimpaired almost up to the close.” This is agreed to by all authorities. The symptoms of strychnia poisoning have been explained away by the defence as “hysteria,” “idiopathic tetanus,” “epileptic convulsions with tetanic complications” (Dr. Macdonald in Palmer’s trial), “angina pectoris” (Dr. Richardson), “apoplexy” (Dr. Bamford’s certificate). Gritty granules on the spinal cord, sexual or other excitement, cold and damp, drink, &c., were in that trial assigned as causes. As to “gritty granules,” the expression is not clear; such granules as occurred in Cook have been found in many post-mortems, where they certainly did not cause the death. Sexual excitement was out of the question in this case. Drink does not cause tetanus. The cold and damp were hardly sufficient reasons, as no symptoms of chill were noticed. Apoplexy is distinct, as in this the brain would show the disease. Hysteria, epilepsy, and idiopathic tetanus (tetanus which is “constitutional,” or not occasioned by external injury) produce in some cases insensibility; strychnia, as a rule, does not. They are also continuous in symptoms. Traumatic tetanus is caused by a wound or injury, rarely by ulcers or syphilitic sores (see p. 113). If there be none of these it cannot, of course, be traumatic tetanus. Hysteria is exceedingly variable, and simulates many other diseases: it is generally the result of excitement. But it does not produce opisthotonos. Epilepsy has never such symptoms as strychnia occasions: it rarely supervenes without some history of hereditary Post-Mortem Appearances.—Neither characteristic nor uniform (Guy and Ferrier). As a rule, the body is relaxed at death, and stiffens afterwards (Taylor), but occasionally the reverse is the case (Reg. v. Vyse, Central Criminal Court, 1862). Treatment and Antidotes.—The question will often arise in a trial whether the best means were taken of saving the patient. In Tawell’s trial it was actually suggested that the water poured down the throat may have caused the death by choking! If emetics are used, they are all more or less poisons. If the stomach-pump be employed, it will cause irritation and exhaustion. Nevertheless, where a violent poison has been given, the only hope is in strong remedies—to empty the stomach by emetics or the pump, to give tannin or animal charcoal, and to generally sustain nature during the operations. As the inquiry is, “What caused death?” the defence will frequently endeavour to fasten the responsibility on the remedial measures. These would not of themselves be fatal, unless disease or poison had previously brought the patient to a nearly dying state; whether it be disease or poison will be otherwise determined. The direct antidote to strychnia is chloroform. In animals I have noticed a large percentage of recoveries. Woodman and Tidy (Forens. Med., p. 332) give the majority of recoveries to this agent. Death or recovery is always rapid; if a person lives over five or six hours, the case is hopeful (Woodman and Tidy). One or two considerations remain. Dr. Taylor’s evidence (1.) “The colour tests are fallacious” (pp. 144 and 147). They are quite decisive if properly performed, and the precautions remembered. (2.) “I know of no process which can detect strychnia in the tissues” (p. 133). This has been repeatedly done by the same method as is used for the stomach. Dr. Taylor himself admits it in his later works (see Med. Juris., 1873, p. 415). No operator now neglects the tissues. They should always be forwarded for analysis at the same time as the stomach, but in separate jars. If indications be obtained, the question will occur—“Could they be due to Selmi’s ptomaine, resembling strychnia?” If we consider that in an immense multitude of cases of suspicion, where there is no clue, strychnia is tested for but not found, it is evident that this natural imitation of the alkaloid must be decidedly rare. So that the overwhelming probability, if the colour test has been obtained, is that strychnia itself is present. In conclusion, Palmer afterwards is said to have more or less admitted that he poisoned Cook, “but not with strychnia.” Though the word of such a man is of little value, there are others who have been of this opinion. Mr. Justice Grove is reported to have expressed some hesitation afterwards on this point. Mr. Nunneley, who, although he showed too much partizanship in the trial, yet may be said to have certainly had great experience with animals, asserted that the symptoms did not quite coincide with strychnia. Others followed in this train. The assertion is certainly wrong, but Dr. Guy (Forens. Med. 1881, p. 525) has made a suggestion that may be noticed. After quoting Dr. Shearman’s case of a patient who had taken one and a-half grain of morphia acetate, and who was seized with “twitching of the limbs and face, difficulty in swallowing, spasms of the arms, legs, and abdomen, partial opisthotonos, and great activity of The three preparations of “gritty granules” on the spinal cord in the museum of St. Thomas’s Hospital, “in which the patients are said to have died from tetanus” (Mr. Nunneley’s evidence, p. 152, also Dr. Macdonald’s evidence, p. 180), are in section N, numbers 113, 114, and 115. They are described in the catalogue as— “113. Several small patches of earthy matter on the arachnoid of the medulla spinalis.” “114. A spinal cord. There are numerous large plates of bone on the arachnoid of the lumbar portion, and of the cauda equina.” “115. A similar preparation. The plates of bone extend as high as the upper dorsal vertebrÆ.” Mr. Charles Stewart, professor of comparative anatomy and curator of the museum at St. Thomas’s, tells me that these are calcareous, but not true bone, that they are not uncommon in post-mortems where they have had nothing to do with death, and that if the above had died from tetanus it would probably have been recorded in the catalogue. As there is no mention of the cause of death, it is certain that it had no reference to the so-called “granules.” The assertion of Mr. Morley (Dove’s Case, p. 245), that strychnia is decomposed into its elements, is obviously incorrect, probably an error of the reporter. See also an interesting case lately reported (J. de Pharm. et de Chimie, November 1882), where strychnia was found, and also arsenic, in the stomach, liver, and brain. Dr. John Harley tells me that he finds hemlock juice the best antidote to the convulsions of all kinds of tetanus. He has had many successful cases. Messrs. Mavor, veterinary surgeons, find this remedy most efficacious with horses, in which animal tetanus is very common. |