Shafts.

Previous

It is not intended to give much length to the description of the Shafts or the Land Tunnels, as more interest will probably center in the River Tunnels.

The shafts did not form part of the regular tunnel contract, but were built under contract by the United Engineering and Contracting Company while the contract plans for the tunnel were being prepared. In this way, when the tunnel contracts were let, the contractor found the shafts ready, and he could get at his work at once.

Two shafts were provided, one on the New York side and one on the New Jersey side. Their exact situation is shown on Plate XXVIII. They were placed as near as possible to the point at which the disappearance of the rock from the tunnels made it necessary to start the shield-driven portion of the work.

The details of the shafts will now be described briefly.

The Manhattan Shaft.—The Manhattan Shaft is located about 100 ft. north of the tunnel center; there was nothing noticeable about its construction. General figures relating to both shafts are given in Table 1.

The Weehawken Shaft.—The Weehawken Shaft is shown in Fig. 1. This, as will be seen from Table 1, was a comparatively large piece of work. The shaft is over the tunnels, and includes both of them. In the original design the wall of the shaft was intended to follow in plan the property line shown in Fig. 2, and merely to extend down to the surface of the rock, which, as disclosed by the preliminary borings, was here about 15 ft. below the surface. However, as the excavation proceeded, it was found that this plan would not do, as the depth to the rock surface varied greatly, and was often much lower than expected; the rock itself, moreover, was very treacherous, the cause being that the line of junction between the triassic sandstone, which is here the country rock, and the intrusive trap of the Bergen Hill ridge, occurs about one-third of the length of the shaft from its western end, causing more or less disintegration of both kinds of rock. Therefore it was decided to line the shaft with concrete throughout its entire depth, the shape being changed to a rectangular plan, as shown in the drawings. At the same time that the shaft was excavated, a length of 40 ft. of tunnels at each end of it was taken out, also on account of the treacherous nature of the ground, thus avoiding risk of injury to the shaft when the tunnel contractors commenced work. There was much trouble with floods during the fall of 1903, and numerous heavy falls of ground occurred, in spite of extreme care and much heavy timbering. The greatest care was also taken in placing the concrete lining, and the framing to support the forms was carefully designed and of heavy construction; the forms were of first-class workmanship, and great care was taken to keep them true to line. A smooth surface was given to the concrete by placing a 3-in. layer of mortar at the front of the walls and tamping this dry facing mixture well down with the rest of the concrete. The east and west walls act as retaining walls, while those on the north and south are facing walls, and are tied to the rock with steel rods embedded and grouted into the rock and into the concrete. Ample drainage for water at the back of the wall was provided by upright, open-joint, vitrified drains at frequent intervals, with dry-laid stone drains leading to them from all wet spots in the ground. A general view of the finished work is shown in Fig. 1, Plate XXIX, and Table 1 gives the most important dates and figures relating to this shaft.

TRANS. AM. SOC. CIV. ENGRS.
VOL. LXVIII, No. 1155.
HEWETT AND BROWN ON
PENNSYLVANIA R. R. TUNNELS: NORTH RIVER TUNNELS.
Plan and Profile of Sections Gy East, Gy Supplememtary, Gy West, and Gj
Plan and Profile of Sections Gy East, Gy Supplememtary, Gy West, and Gj
Click to view larger image.

TABLE 1.— Particulars of Shafts on the North River Tunnels of the Pennsylvania Railroad Tunnels Into New York City.

Location. Depth, in feet. Width, in feet. Length, in feet. Excavation (including drifts) Concrete, in cubic yards. Date commenced. Date finished. Ground met: Lined with: Cost to Railroad Company. Cost per cubic foot.
Manhattan: 11th Avenue and 32d Street. 55 22 32 2,010 209 June 10th, 1903. December 11th, 1903. Top 13 ft. filled; red mica schist and granite. Concrete reinforced with steel beams down to rock. $12,943.75 $0.335
Weehawken: Baldwin Avenue. 76 At bottom 56, at top 100 At bottom 115.75, at top 154 55,315 9,810 June 11th, 1903. September 1st, 1904 Top 6 ft. filled, 30ft. sand hardpan, decomposed rock (trap and sandstone)below. Concrete with steel tie-rods in rock. 166,162,98 0.337

Final Design of Weehawken Shaft Plan Fig. 1. Final Design of Weehawken Shaft Plan
Fig. 1.
Click to view larger image.

After the tunnel work was finished, both shafts were provided with stairs leading to the surface, a protective head-house was placed over the New York Shaft, and a reinforced concrete fence, 8 ft. high, was built around the Weehawken Shaft on the Company's property line, that is, following the outline of the shaft as originally designed.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page