CHAPTER XIX.

Previous

Permanence of Newton’s Reputation—Character of his Genius—His Methods of Investigation similar to that used by Galileo—Error in ascribing his Discoveries to the Use of the Methods recommended by Lord Bacon—The Pretensions of the Baconian Philosophy examined—Sir Isaac Newton’s social Character—His great Modesty—The Simplicity of his Character—His religious and moral Character—His Hospitality and Mode of Life—His Generosity and Charity—His Absence—His personal Appearance—Statues and Pictures of him—Memorials and Recollections of him.

Such were the last days of Sir Isaac Newton, and such the last laurels which were shed over his grave. A century of discoveries has since his day been added to science; but brilliant as these discoveries are, they have not obliterated the minutest of his labours, and have served only to brighten the halo which encircles his name. The achievements of genius, like the source from which they spring, are indestructible. Acts of legislation and deeds of war may confer a high celebrity, but the reputation which they bring is only local and transient; and while they are hailed by the nation which they benefit, they are reprobated by the people whom they ruin or enslave. The labours of science, on the contrary, bear along with them no counterpart of evil. They are the liberal bequests of great minds to every individual of their race, and wherever they are welcomed and honoured they become the solace of private life, and the ornament and bulwark of the commonwealth.

The importance of Sir Isaac Newton’s discoveries has been sufficiently exhibited in the preceding chapters: the peculiar character of his genius, and the method which he pursued in his inquiries, can be gathered only from the study of his works, and from the history of his individual labours. Were we to judge of the qualities of his mind from the early age at which he made his principal discoveries, and from the rapidity of their succession, we should be led to ascribe to him that quickness of penetration, and that exuberance of invention, which is more characteristic of poetical than of philosophical genius. But we must recollect that Newton was placed in the most favourable circumstances for the development of his powers. The flower of his youth and the vigour of his manhood were entirely devoted to science. No injudicious guardian controlled his ruling passion, and no ungenial studies or professional toils interrupted the continuity of his pursuits. His discoveries were, therefore, the fruit of persevering and unbroken study; and he himself declared, that whatever service he had done to the public was not owing to any extraordinary sagacity, but solely to industry and patient thought.

Initiated early into the abstractions of geometry, he was deeply imbued with her cautious spirit; and if his acquisitions were not made with the rapidity of intuition, they were at least firmly secured; and the grasp which he took of his subject was proportional to the mental labour which it had exhausted. Overlooking what was trivial, and separating what was extraneous, he bore down with instinctive sagacity on the prominences of his subject, and having thus grappled with its difficulties, he never failed to intrench himself in its strongholds.

To the highest powers of invention Newton added, what so seldom accompanies them, the talent of simplifying and communicating his profoundest speculations.125 In the economy of her distributions, nature is seldom thus lavish of her intellectual gifts. The inspired genius which creates is rarely conferred along with the matured judgment which combines, and yet without the exertion of both the fabric of human wisdom could never have been reared. Though a ray from heaven kindled the vestal fire, yet an humble priesthood was required to keep alive the flame.

The method of investigating truth by observation and experiment, so successfully pursued in the Principia, has been ascribed by some modern writers of great celebrity to Lord Bacon; and Sir Isaac Newton is represented as having owed all his discoveries to the application of the principles of that distinguished writer. One of the greatest admirers of Lord Bacon has gone so far as to characterize him as a man who has had no rival in the times which are past, and as likely to have none in those which are to come. In a eulogy so overstrained as this, we feel that the language of panegyric has passed into that of idolatry; and we are desirous of weighing the force of arguments which tend to depose Newton from the high-priesthood of nature, and to unsettle the proud destinies of Copernicus, Galileo, and Kepler.

That Bacon was a man of powerful genius, and endowed with varied and profound talent,—the most skilful logician,—the most nervous and eloquent writer of the age which he adorned, are points which have been established by universal suffrage. The study of ancient systems had early impressed him with the conviction that experiment and observation were the only sure guides in physical inquiries; and, ignorant though he was of the methods, the principles, and the details of the mathematical sciences, his ambition prompted him to aim at the construction of an artificial system by which the laws of nature might be investigated, and which might direct the inquiries of philosophers in every future age. The necessity of experimental research, and of advancing gradually from the study of facts to the determination of their cause, though the groundwork of Bacon’s method, is a doctrine which was not only inculcated but successfully followed by preceding philosophers. In a letter from Tycho Brahe to Kepler, this industrious astronomer urges his pupil “to lay a solid foundation for his views by actual observation, and then by ascending from these to strive to reach the causes of things;” and it was no doubt under the influence of this advice that Kepler submitted his wildest fancies to the test of observation, and was conducted to his most splendid discoveries. The reasonings of Copernicus, who preceded Bacon by more than a century, were all founded upon the most legitimate induction. Dr. Gilbert had exhibited in his treatise on the magnet126 the most perfect specimen of physical research. Leonardo da Vinci had described in the clearest manner the proper method of philosophical investigation;127 and the whole scientific career of Galileo was one continued example of the most sagacious application of observation and experiment to the discovery of general laws. The names of Paracelsus, Van Helmont, and Cardan have been ranged in opposition to this constellation of great names, and while it is admitted that even they had thrown off the yoke of the schools, and had succeeded in experimental research, their credulity and their pretensions have been adduced as a proof that to the “bulk of philosophers” the method of induction was unknown. The fault of this argument consists in the conclusion being infinitely more general than the fact. The errors of these men were not founded on their ignorance, but on their presumption. They wanted the patience of philosophy and not her methods. An excess of vanity, a waywardness of fancy, and an insatiable appetite for that species of passing fame which is derived from eccentricity of opinion, moulded the reasonings and disfigured the writings of these ingenious men; and it can scarcely admit of a doubt, that, had they lived in the present age, their philosophical character would have received the same impress from the peculiarity of their tempers and dispositions. This is an experiment, however, which cannot now be made; but the history of modern science supplies the defect, and the experience of every man furnishes a proof that in the present age there are many philosophers of elevated talents and inventive genius who are as impatient of experimental research as Paracelsus, as fanciful as Cardan, and as presumptuous as Van Helmont.

Having thus shown that the distinguished philosophers who flourished before Bacon were perfect masters both of the principles and practice of inductive research, it becomes interesting to inquire whether or not the philosophers who succeeded him acknowledged any obligation to his system, or derived the slightest advantage from his precepts. If Bacon constructed a method to which modern science owes its existence, we shall find its cultivators grateful for the gift, and offering the richest incense at the shrine of a benefactor whose generous labours conducted them to immortality. No such testimonies, however, are to be found. Nearly two hundred years have gone by, teeming with the richest fruits of human genius, and no grateful disciple has appeared to vindicate the rights of the alleged legislator of science. Even Newton, who was born and educated after the publication of the Novum Organon, never mentions the name of Bacon or his system, and the amiable and indefatigable Boyle treated him with the same disrespectful silence. When we are told, therefore, that Newton owed all his discoveries to the method of Bacon, nothing more can be meant than that he proceeded in that path of observation and experiment which had been so warmly recommended in the Novum Organon; but it ought to have been added, that the same method was practised by his predecessors,—that Newton possessed no secret that was not used by Galileo and Copernicus,—and that he would have enriched science with the same splendid discoveries if the name and the writings of Bacon had never been heard of.

From this view of the subject we shall now proceed to examine the Baconian process itself, and consider if it possesses any merit as an artificial method of discovery, or if it is at all capable of being employed, for this purpose, even in the humblest walks of scientific inquiry.

The process of Lord Bacon was, we believe, never tried by any philosopher but himself. As the subject of its application, he selected that of heat. With his usual erudition, he collected all the facts which science could supply,—he arranged them in tables,—he cross-questioned them with all the subtlety of a pleader,—he combined them with all the sagacity of a judge,—and he conjured with them by all the magic of his exclusive processes. But, after all this display of physical logic, nature thus interrogated was still silent. The oracle which he had himself established refused to give its responses, and the ministering priest was driven with discomfiture from his own shrine. This example, in short, of the application of his system, will remain to future ages as a memorable instance of the absurdity of attempting to fetter discovery by any artificial rules.

Nothing even in mathematical science can be more certain than that a collection of scientific facts are of themselves incapable of leading to discovery, or to the determination of general laws, unless they contain the predominating fact or relation in which the discovery mainly resides. A vertical column of arch-stones possesses more strength than the same materials arranged in an arch without the key-stone. However nicely they are adjusted, and however nobly the arch may spring, it never can possess either equilibrium or stability. In this comparison all the facts are supposed to be necessary to the final result; but, in the inductive method, it is impossible to ascertain the relative importance of any facts, or even to determine if the facts have any value at all, till the master-fact which constitutes the discovery has crowned the zealous efforts of the aspiring philosopher. The mind then returns to the dark and barren waste over which it has been hovering; and by the guidance of this single torch it embraces, under the comprehensive grasp of general principles, the multifarious and insulated phenomena which had formerly neither value nor connexion. Hence it must be obvious to the most superficial thinker, that discovery consists either in the detection of some concealed relation—some deep-seated affinity which baffles ordinary research, or in the discovery of some simple fact which is connected by slender ramifications with the subject to be investigated; but which, when once detected, carries us back by its divergence to all the phenomena which it embraces and explains.

In order to give additional support to these views, it would be interesting to ascertain the general character of the process by which a mind of acknowledged power actually proceeds in the path of successful inquiry. The history of science does not furnish us with much information on this head, and if it is to be found at all, it must be gleaned from the biographies of eminent men. Whatever this process may be in its details, if it has any, there cannot be the slightest doubt that in its generalities at least it is the very reverse of the method of induction. The impatience of genius spurns the restraints of mechanical rules, and never will submit to the plodding drudgery of inductive discipline. The discovery of a new fact unfits even a patient mind for deliberate inquiry. Conscious of having added to science what had escaped the sagacity of former ages, the ambitious spirit invests its new acquisition with an importance which does not belong to it. He imagines a thousand consequences to flow from his discovery: he forms innumerable theories to explain it, and he exhausts his fancy in trying all its possible relations to recognised difficulties and unexplained facts. The reins, however, thus freely given to his imagination, are speedily drawn up. His wildest conceptions are all subjected to the rigid test of experiment, and he has thus been hurried by the excursions of his own fancy into new and fertile paths, far removed from ordinary observation. Here the peculiar character of his own genius displays itself by the invention of methods of trying his own speculations, and he is thus often led to new discoveries far more important and general than that by which he began his inquiry. For a confirmation of these views, we may refer to the History of Kepler’s Discoveries; and if we do not recognise them to the same extent in the labours of Newton, it is because he kept back his discoveries till they were nearly perfected, and therefore withheld the successive steps of his inquiries.

The social character of Sir Isaac Newton was such as might have been expected from his intellectual attainments. He was modest, candid, and affable, and without any of the eccentricities of genius, suiting himself to every company, and speaking of himself and others in such a manner that he was never even suspected of vanity. “But this,” says Dr. Pemberton, “I immediately discovered in him, which at once both surprised and charmed me. Neither his extreme great age nor his universal reputation had rendered him stiff in opinion, or in any degree elated. Of this I had occasion to have almost daily experience. The remarks I continually sent him by letters on the Principia were received with the utmost goodness. These were so far from being any ways displeasing to him, that on the contrary it occasioned him to speak many kind things of me to my friends, and to honour me with a public testimony of his good opinion.”

The modesty of Sir Isaac Newton in reference to his great discoveries was not founded on any indifference to the fame which they conferred, or upon any erroneous judgment of their importance to science. The whole of his life proves, that he knew his place as a philosopher, and was determined to assert and vindicate his rights. His modesty arose from the depth and extent of his knowledge, which showed him what a small portion of nature he had been able to examine, and how much remained to be explored in the same field in which he had himself laboured. In the magnitude of the comparison he recognised his own littleness; and a short time before his death he uttered this memorable sentiment:—“I do not know what I may appear to the world; but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, while the great ocean of truth lay all undiscovered before me.” What a lesson to the vanity and presumption of philosophers,—to those especially who have never even found the smoother pebble or the prettier shell! What a preparation for the latest inquiries, and the last views of the decaying spirit,—for those inspired doctrines which alone can throw a light over the dark ocean of undiscovered truth!

The native simplicity of Sir Isaac Newton’s mind is finely portrayed in the affecting letter in which he acknowledges to Locke that he had thought and spoken of him uncharitably; and the humility and candour in which he asks forgiveness could have emanated only from a mind as noble as it was pure.

In the religious and moral character of our author there is much to admire and to imitate. While he exhibited in his life and writings an ardent regard for the general interests of religion, he was at the same time a firm believer in revelation. He was too deeply versed in the Scriptures, and too much imbued with their spirit, to judge harshly of other men who took different views of them from himself. He cherished the great principles of religious toleration, and never scrupled to express his abhorrence of persecution, even in its mildest form. Immorality and impiety he never permitted to pass unreproved; and when Dr. Halley128 ventured to say any thing disrespectful to religion, he invariably checked him, and said, “I have studied these things,—you have not.”129

After Sir Isaac Newton took up his residence in London, he lived in a very handsome style, and kept his carriage, with an establishment of three male and three female servants. In his own house he was hospitable and kind, and on proper occasions he gave splendid entertainments, though without ostentation or vanity. His own diet was frugal, and his dress was always simple; but on one occasion, when he opposed the Honourable Mr. Annesley in 1705, as a candidate for the university, he is said to have put on a suit of laced clothes.

His generosity and charity had no bounds, and he used to remark, that they who gave away nothing till they died never gave at all. Though his wealth had become considerable by a prudent economy, yet he had always a contempt for money, and he spent a considerable part of his income in relieving the poor, in assisting his relations, and in encouraging ingenuity and learning. The sums which he gave to his relations at different times were enormous;130 and in 1724 he wrote a letter to the Lord Provost of Edinburgh, offering to contribute 20l. per annum to a provision for Mr. Maclaurin, provided he accepted the situation of assistant to Mr. James Gregory, who was professor of mathematics in the university.

The habits of deep meditation which Sir Isaac Newton had acquired, though they did not show themselves in his intercourse with society, exercised their full influence over his mind when in the midst of his own family. Absorbed in thought he would often sit down on his bedside after he rose, and remain there for hours without dressing himself, occupied with some interesting investigation which had fixed his attention. Owing to the same absence of mind, he neglected to take the requisite quantity of nourishment, and it was therefore often necessary to remind him of his meals.131

Sir Isaac Newton is supposed to have had little knowledge of the world, and to have been very ignorant of the habits of society. This opinion has, we think, been rashly deduced from a letter which he wrote in the twenty-seventh year of his age to his young friend, Francis Aston, Esq., who was about to set out on his travels. This letter is a highly interesting production; and while it shows much knowledge of the human heart, it throws a strong light upon the character and opinions of its author.

In his personal appearance, Sir Isaac Newton was not above the middle size, and in the latter part of his life was inclined to be corpulent. According to Mr. Conduit “he had a very lively and piercing eye, a comely and gracious aspect, with a fine head of hair as white as silver, without any baldness, and when his peruke was off was a venerable sight.” Bishop Atterbury asserts,132 on the other hand, that the lively and piercing eye did not belong to Sir Isaac during the last twenty years of his life. “Indeed,” says he, “in the whole air of his face and make there was nothing of that penetrating sagacity which appears in his compositions. He had something rather languid in his look and manner which did not raise any great expectation in those who did not know him.” This opinion of Bishop Atterbury is confirmed by an observation of Mr. Thomas Hearne,133 who says “that Sir Isaac was a man of no very promising aspect. He was a short, well-set man. He was full of thought, and spoke very little in company, so that his conversation was not agreeable. When he rode in his coach, one arm would be out of his coach on one side and the other on the other.” Sir Isaac never wore spectacles, and never “lost more than one tooth to the day of his death.”

Besides the statue of Sir Isaac Newton executed by Roubiliac, there is a bust of him by the same artist in the library of Trinity College, Cambridge. Several good paintings of him are extant. Two of these are in the hall of the Royal Society of London, and have, we believe, been often engraved. Another, by Vanderbank, is in the apartments of the Master’s lodge in Trinity College, and has been engraved by Vertue. Another, by Valentine Ritts, is in the landing-place near the entrance to Trinity College library; but the best, from which our engraving is copied, was painted by Sir Godfrey Kneller, and is in the possession of Lord Egremont at Petworth. In the university library there is preserved a cast taken from his face after death.

Every memorial of so great a man as Sir Isaac Newton has been preserved and cherished with peculiar veneration. His house at Woolsthorpe, of which we have given an engraving, has been religiously protected by Mr. Turnor of Stoke Rocheford, the proprietor. Dr. Stukeley, who visited it in Sir Isaac’s lifetime, on the 13th October, 1721, gives the following description of it in his letter to Dr. Mead, written in 1727: “’Tis built of stone as is the way of the country hereabouts, and a reasonable good one. They led me up stairs and showed me Sir Isaac’s study, where I suppose he studied when in the country in his younger days, or perhaps when he visited his mother from the university. I observed the shelves were of his own making, being pieces of deal boxes which probably he sent his books and clothes down in on those occasions. There were some years ago two or three hundred books in it of his father-in-law, Mr. Smith, which Sir Isaac gave to Dr. Newton of our town.”134

When the house was repaired in 1798, a tablet of white marble was put up by Mr. Turnor in the room where Sir Isaac was born, with the following inscription:

“Sir Isaac Newton, son of John Newton, Lord of the manor of Woolsthorpe, was born in this room on the 25th December, 1642.”

Nature and Nature’s laws lay hid in night,
God said, “Let Newton be,” and all was light.

The following lines have been written upon the house:

Here Newton dawned, here lofty wisdom woke,
And to a wondering world divinely spoke.
If Tully glowed, when PhÆdrus’ steps he trode,
Or fancy formed Philosophy a god;
If sages still for Homer’s birth contend
The Sons of Science at this dome must bend.
All hail the shrine! All hail the natal day,
Cam boasts his noon,—This Cot his morning ray.

The house is now occupied by a person of the name of John Wollerton. It still contains the two dials made by Newton, but the styles of both are wanting. The celebrated apple-tree, the fall of one of the apples of which is said to have turned the attention of Newton to the subject of gravity, was destroyed by wind about four years ago; but Mr. Turnor has preserved it in the form of a chair.135

The chambers which Sir Isaac inhabited at Cambridge are known by tradition. They are the apartments next to the great gate of Trinity College, and it is believed that they then communicated by a staircase with the observatory in the Great Tower,—an observatory which was furnished by the contributions of Newton, Cotes, and others. His telescope, represented in fig.3, page 41, is preserved in the library of the Royal Society of London, and his globe, his universal ring-dial, quadrant, compass, and a reflecting telescope said to have belonged to him, in the library of Trinity College. There is also in the same collection a long and curled lock of his silver white hair. The door of his bookcase is in the Museum of the Royal Society of Edinburgh.

The manuscripts, letters, and other papers of Newton have been preserved in different collections. His correspondence with Cotes relative to the second edition of the Principia, and amounting to between sixty and a hundred letters, a considerable portion of the manuscript of that work, and two or three letters to Dr. Keill on the Leibnitzian controversy, are preserved in the library of Trinity College, Cambridge. Newton’s letters to Flamstead, about thirty-four in number, are deposited in the library of Corpus Christi College, Oxford.136 Several letters of Newton, and, we believe, the original specimen which he drew up of the Principia, exist among the papers of Mr. William Jones (the father of Sir William Jones), which are preserved at Shirburn Castle, in the library of Lord Macclesfield. But the great mass of Newton’s papers came into the possession of the Portsmouth family through his niece, Lady Lymington, and have been safely preserved by that noble family. There is reason to believe that they contain nothing which could be peculiarly interesting to science; but as the correspondence of Newton with contemporary philosophers must throw considerable light on his personal history, we trust that it will ere long be given to the public.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page