In examining the nature and origin of colours as the component parts of white light, the attention of Newton was directed to the curious subject of the colours of thin plates, and to its application to explain the colours of natural bodies. His earliest researches on this subject were communicated, in his Discourse on Light and Colours, to the Royal Society, on the 9th December, 1675, and were read at subsequent meetings of that body. This discourse contained fuller details respecting the composition and decomposition of light than he had given in his letter to Oldenburg, and was concluded with nine propositions, showing how the colours of thin transparent plates stand related to those of all natural bodies. The colours of thin plates seem to have been first observed by Mr. Boyle. Dr. Hooke afterward studied them with some care, and gave a correct account of the leading phenomena, as exhibited in the coloured rings upon soap-bubbles, and between plates of glass pressed together. He recognised that the colour depended upon some certain thickness of the transparent plate, but he acknowledges that he had attempted in vain to discover the relation between the thickness of the plate and the colour which it produced. Dr. Hooke succeeded in splitting a mineral substance, called mica, into films of such extreme thinness as to give brilliant colours. One plate, for example, In order to understand how he proceeded, let CED be the convex surface of the one object-glass, and AEB the flat surface of the other. Let them touch at the point E, and let homogeneous red rays fall upon them, as shown in the figure. At the point of contact E, where the plate of air is inconceivably thin, not a single ray of the pencil RE is reflected. The light is wholly transmitted, and, consequently, to an eye above E, there will appear at E a black spot. At a, where the plate of air is thicker, the red light ra is reflected in the direction aa', and as the air has the same thickness in a circle round the point E, the eye above E, at a, will see next the black spot E a ring of red light. At m, When the same experiment was repeated in orange, yellow, green, blue, indigo, and violet light, the very same phenomenon was observed; with this difference only, that the rings were largest in red light, and smallest in violet light, and had intermediate magnitudes in the intermediate colours. If the observer now places his eye below E, so as to see the transmitted rays, he will observe a set of rings as before, but they will have a bright spot in their centre at E, and the luminous rings will now correspond with those which were dark when seen by reflection, as will be readily understood from inspecting the preceding diagram. When the object-glasses are illuminated by white 1st Order. Black, blue, white, yellow, orange, red. 2d Order. Violet, blue, green, yellow, orange, red. 3d Order. Purple, blue, green, yellow, red, bluish-red. 4th Order. Bluish-green, green, yellowish-green, red. 5th Order. Greenish-blue, red. 6th Order. Greenish-blue, red. By accurate measurements, Sir Isaac found that the thicknesses of air at which the most luminous parts of the first rings were produced, were in parts of an inch 1/178000, 3/178000, 5/178000, 7/178000, 9/178000, 11/178000. If the medium or the substance of the thin plate is water, as in the case of the soap-bubble, which produces beautiful colours according to its different degrees of thinness, the thicknesses at which the most luminous parts of the rings appear are produced at 1/1·336 of the thickness at which they are produced in air, and in the case of glass or mica at 1/1·525 of that thickness; the numbers 1.336, 1.525 expressing the ratio of the sines of the angles of incidence and refraction in the substances which produce the colours. From the phenomena thus briefly described, Sir Isaac Newton deduces that ingenious, though hypothetical, property of light, called its fits of easy reflection and transmission. This property consists in supposing that every particle of light from its first discharge from a luminous body possesses, at equally distant intervals, dispositions to be reflected from, The application of the theory of alternate fits of reflection and transmission to explain the colours of thin plates is very simple. When the light falls upon the first surface AB, Fig. 8 of the plate of air between AB and CED, the rays that are in a fit of reflection are reflected, and those that are in a fit of transmission are transmitted. Let us call F the length of a fit, or the distance through which the particle of light moves while it passes from the state of being in a fit of reflection to the state of being in a fit of transmission. Now, as all the particles of light transmitted through AB were in a state of easy transmission when they entered AB, it is obvious, that, if the plate of air at E is so thin as to be less If the thickness of the plate does not vary according to a regular law as in fig.9, but if, like a film of blown glass, it has numerous inequalities, then the alternate fringes of light and darkness will vary with the thickness of the film, and throughout the whole length of each fringe the thickness of the film will be the same. We have supposed in the preceding illustration that the light employed is homogeneous. If it is white, then the differently coloured fringes will form by their superposition a system of fringes analogous to those seen between two object-glasses, as already explained. The same periodical colours which we have now described as exhibited by thin plates were discovered by Newton in thick plates, and he has explained them by means of the theory of fits; but it would lead us beyond the limits of a popular work like this to enter into any details of his observations, or to give an account of the numerous and important additions which this branch of optics has received from the discoveries of succeeding authors. |