The appointment of Newton to the Lucasian chair at Cambridge seems to have been coeval with his grandest discoveries. The first of these of which the date is well authenticated is that of the different refrangibility of the rays of light, which he established in 1666. The germ of the doctrine of universal gravitation seems to have presented itself to him in the same year, or at least in 1667; and “in the year 1666 or before”9 he was in possession of his method of fluxions, and he had brought it to such a state in the beginning of 1669, that he permitted Dr. Barrow to communicate it to Mr. Collins on the 20th of June in that year. Although we have already mentioned, on the authority of a written memorandum of Newton himself, that he purchased a prism at Cambridge in 1664, yet he does not appear to have made any use of it, as he informs us that it was in 1666 that he “procured In attempting to grind glasses that were not spherical, Newton seems to have conjectured that the defects of lenses, and consequently of refracting telescopes, might arise from some other cause than the imperfect convergency of rays to a single point, and this conjecture was happily realized in those fine discoveries of which we shall now endeavour to give some account. When Newton began this inquiry, philosophers of the highest genius were directing all the energies of their mind to the subject of light, and to the improvement of the refracting telescope. James Gregory of Aberdeen had invented his reflecting telescope. Descartes had explained the theory and exerted himself in perfecting the construction of the common refracting telescope, and Huygens had not The ignorance which then prevailed respecting the nature and origin of colours is sufficiently apparent from the account we have already given of Dr. Barrow’s speculations on this subject. It was always supposed that light of every colour was equally refracted or bent out of its direction when it passed through any lens or prism, or other refracting medium; and though the exhibition of colours by the prism had been often made previous to the time of Newton, yet no philosopher seems to have attempted to analyze the phenomena. When he had procured his triangular glass prism, a section of which is shown at ABC, (fig.1,) he made a hole H in one of his window-shutters, SHT, and having darkened his chamber, he let in a convenient quantity of the sun’s light RR, which, passing Newton next suspected that some unevenness in the glass, or other accidental irregularity, might cause the dilatation of the colours. In order to try this, he took another prism BCB', and placed it in such a manner that the light RRW passing through them both might be refracted contrary ways, and thus returned by BCB' into that course RRW, from which the prism ABC had diverted it, for by this means he thought the regular effects of the prism ABC would be destroyed by the prism BCB', and the irregular ones more augmented by the multiplicity Our author next proceeded to examine more critically what might be effected by the difference of the incidence of the rays proceeding from different parts of the sun’s disk: but by taking accurate measures of the lines and angles, he found that the angle of the emergent rays should be 31 minutes equal to the sun’s diameter, whereas the real angle subtended by MN at the hole H was 2° 49'. But as this computation was founded on the hypothesis, that the sine of the angle of incidence was proportional to the sine of the angle of refraction, which from his own experience he could not imagine to be so erroneous as to make that angle but 31', which was in reality 2° 49', yet “his curiosity caused him again to take up his prism” ABC, and having turned it round in both directions, so as to make the rays RR fall both with greater and with less obliquity upon the face AC, he found that the colours on the wall did not sensibly change their place; and hence he obtained a decided proof that they could not be occasioned by a difference in the incidence of the light radiating from different parts of the sun’s disk. Newton then began to suspect that the rays, after passing through the prism, might move in curve lines, and, in proportion to the different degrees of curvature, might tend to different parts of the wall; and this suspicion was strengthened by the recollection that he had often seen a tennis-ball struck with an oblique racket describe such a curve line. In this case a circular and a progressive motion is communicated to the ball by the stroke, and in consequence of this, the direction of its motion was curvilineal, These different hypotheses, or suspicions, as Newton calls them, being thus gradually removed, he was at length led to an experiment which determined beyond a doubt the true cause of the elongation of the coloured image. Having taken a board with a small hole in it, he placed it behind the face BC of the prism, and close to it, so that he could transmit through the hole any one of the colours in MN, and keep back all the rest. When the hole, for example, was near C, no other light but the red fell upon the wall at N. He then placed behind N another board with a hole in it, and behind this board he placed another prism, so as to receive the red light at N, which passed through this hole in the second board. He then turned round the first prism ABC so as to make all the colours pass in succession through these two holes, and he marked their places on the wall. From the variation of these places, he saw that the red rays at N were less refracted by the second prism than the orange rays, the orange less than the yellow, and so on, the violet being more refracted than all the rest. Hence he drew the grand conclusion, that light was not homogeneous, but consisted of rays, some of which were more refrangible than others. As soon as this important truth was established, Sir Isaac saw that a lens which refracts light exactly Hence, if we suppose LL to be the object-glass of a telescope directed to the sun, and MM an eye-glass through which the eye at E sees magnified the image or picture of the sun formed by LL, it cannot see distinctly all the different images between R and V. If it is adjusted so as to see distinctly the yellow image at Y, as it is in the figure, it will not see distinctly either the red or violet images, nor indeed any of them but the yellow one. There will consequently be a distinct yellow image, with indistinct images of all the other colours, producing great confusion and indistinctness of vision. As soon as Sir Isaac perceived this result of his discovery, he abandoned his attempts to improve the refracting telescope, Such was the progress of Newton’s optical discoveries, when he was forced to quit Cambridge in 1666 by the plague which then desolated England, and more than two years elapsed before he proceeded any farther. In 1668 he resumed the inquiry, and having thought of a delicate method of polishing, proper for metals, by which, as he conceived, “the figure would be corrected to the last,” he began to put this method to the test of experiment. At this time he was acquainted with the proposal of Mr. James Gregory, contained in his Optica Promota, to construct a reflecting telescope with two concave specula, the largest of which had a hole in the middle of the larger speculum, to transmit the light to an eye-glass;11 but he conceived that it would be Although Newton considered this little instrument The telescope now described possesses a very peculiar interest, as being the first reflecting one which was ever executed and directed to the heavens. James Gregory, indeed, had attempted, in 1664 or 1665, to construct his instrument. He employed Messrs. Rives and Cox, who were celebrated glass-grinders of that time, to execute a concave speculum of six feet radius, and likewise a small one; but as they had failed in polishing the large one, and as Mr. Gregory was on the eve of going abroad, he troubled himself no farther about the experiment, and the tube of the telescope was never made. Some time afterward, indeed, he “made some trials both with a little concave and convex speculum,” but, “possessed with the fancy of the defective figure, he would not be at the pains to fix every thing in its due distance.” Such were the earliest attempts to construct the reflecting telescope, that noble instrument which has since effected such splendid discoveries in astronomy. Looking back from the present advanced state of practical science, how great is the contrast between the loose specula of Gregory and the fine Gregorian telescopes of Hadley, Short, and Veitch,—between the humble six-inch tube of Newton and the gigantic instruments of Herschel and Ramage. On the 11th of January, 1672, it was announced to the Royal Society that his reflecting telescope had been shown to the king, and had been examined by the president, Sir Robert Moray, Sir Paul Neale, Sir Christopher Wren, and Mr. Hook. These gentlemen entertained so high an opinion of it, that, in order to secure the honour of the contrivance to its author, they advised the inventor to send a drawing and description of it to Mr. Huygens at Paris. Mr. Oldenburg accordingly drew up a description of it in Latin, which, after being corrected by Mr. Newton, was transmitted to that eminent philosopher. This telescope, of which the annexed is an accurate drawing, is carefully preserved in the library of the Royal Society of London, with the following inscription:—
For a period of fifty years this recommendation excited no notice. At last Mr. James Short of Edinburgh, an artist of consummate skill, executed about the year 1730 no fewer than six reflecting telescopes with glass specula, three of fifteen inches, and three of nine inches in focal length. He found it extremely troublesome to give them a true figure with parallel surfaces; and several of them when finished turned out useless, in consequence of the veins which then appeared in the glass. Although these instruments performed remarkably well, yet the light was fainter than he expected, and from this cause, combined with the difficulty of finishing them, he afterward devoted his labours solely to those with metallic specula. At a later period, in 1822, Mr. G.B. Airy of Trinity College, and one of the distinguished successors of Newton in the Lucasian chair, resumed the consideration of glass specula, and demonstrated that the aberration both of figure and of colour might be corrected in these instruments. Upon this ingenious principle Mr. Airy executed more than Such were the attempts which Sir Isaac Newton made to construct reflecting telescopes; but notwithstanding the success of his labours, neither the philosopher nor the practical optician seems to have had courage to pursue them. A London artist, indeed, undertook to imitate these instruments; but Sir Isaac informs us, that “he fell much short of what he had attained, as he afterward understood by discoursing with the under workmen he had employed.” After a long period of fifty years, John Hadley, Esq. of Essex, a Fellow of the Royal Society, began in 1719 or 1720 to execute a reflecting telescope. His scientific knowledge and his manual dexterity fitted him admirably for such a task, and, probably after many failures, he constructed two large telescopes about five feet three inches long, one of which, with a speculum six inches in diameter, was presented to the Royal Society in 1723. The celebrated Dr. Bradley and the Rev. Mr. Pound compared it with the great Huygenian refractor 123 feet long. It bore as high a magnifying power as the Huygenian telescope: it showed objects equally distinct, though not altogether so clear and bright, and it exhibited every celestial object that had been discovered by Huygens,—the five satellites of Saturn, the shadow of Jupiter’s satellites on his disk, the black list in Saturn’s ring, and the edge of his shadow cast on the ring. Encouraged and instructed by Mr. Hadley, Dr. Bradley began the construction of reflecting telescopes, and succeeded so well that he would have completed one of them, had he not been obliged to change his residence. Some time afterward he and the Honourable Samuel Molyneux undertook the task together at Kew, and attempted to execute specula about twenty-six inches in focal The great object of these two able astronomers was to reduce the method of making specula to such a degree of certainty that they could be manufactured for public sale. Mr. Hauksbee had indeed made a good one about three and a half feet long, and had proceeded to the execution of two others, one of six feet, and another of twelve feet in focal length; but Mr. Scarlet and Mr. Hearne, having received all the information which Mr. Molyneux had acquired, constructed them for public sale; and the reflecting telescope has ever since been an article of trade with every regular optician. As Sir Isaac Newton was at this time President of the Royal Society, he had the high satisfaction of seeing his own invention become an instrument of public use, and of great advantage to science, and he no doubt felt the full influence of this triumph of his skill. Still, however, the reflecting telescope had not achieved any new discovery in the heavens. The latest accession to astronomy had been made by the ordinary refractors of Huygens, labouring under all the imperfections of coloured light; and this long pause in astronomical discovery seemed to indicate that man had carried to its farthest limits his power of penetrating into the depths of the universe. This, however, was only one of those stationary positions from which human genius takes a new and a loftier elevation. While the English opticians were thus practising the recent art of grinding Although the superiority of these instruments, which were all of the Gregorian form, demonstrated the value of the reflecting telescope, yet no skilful hand had yet directed it to the heavens; and it was reserved for Dr. Herschel to employ it as an instrument of discovery, to exhibit to the eye of man new worlds and new systems, and to bring within the grasp of his reason those remote regions of space to which his imagination even had scarcely ventured to extend its power. So early as 1774 he completed a five-feet Newtonian reflector, and he afterward executed no fewer than two hundred 7 feet, one hundred and fifty 10 feet, and eighty 20 feet specula. In During the life of Dr. Herschel, and during the reign, and within the dominions of his royal patron, four new planets were added to the solar system, but they were detected by telescopes of ordinary power; and we venture to state, that since the reign of George III. no attempt has been made to keep up the continuity of Dr. Herschel’s discoveries. Mr. Herschel, his distinguished son, has indeed |