LETTER XI.

Previous

Mechanical automata of the ancients—Moving tripods—Automata of DÆdalus—Wooden pigeon of Archytas—Automatic clock of Charlemagne—Automata made by Turrianus for Charles V.—Camus’s automatic carriage made for Louis XIV.—Degenne’s mechanical peacock—Vaucanson’s duck which ate and digested its food—Du Moulin’s automata—Baron Kempelen’s automaton chess-player—Drawing and writing automata—Maillardet’s conjurer—Benefits derived from the passion for automata—Examples of wonderful machinery for useful purposes—Duncan’s tambouring machinery—Watt’s statue-turning machinery—Babbage’s calculating machinery.

We have already seen that the ancients had attained some degree of perfection in the construction of automata, or pieces of mechanism which imitated the movements of man and the lower animals. The tripods, which Homer31 mentions as having been constructed by Vulcan for the banqueting-hall of the gods, advanced of their own accord to the table, and again returned to their place. Self-moving tripods are mentioned by Aristotle; and Philostratus informs us, in his life of Apollonius, that this philosopher saw and admired similar pieces of mechanism among the sages of India.

DÆdalus enjoys also the reputation of having constructed machines that imitated the motions of the human body. Some of his statues are said to have moved about spontaneously; and Plato, Aristotle, and others have related that it was necessary to tie them, in order to prevent them from running away. Aristotle speaks of a wooden Venus, which moved about in consequence of quicksilver being poured into its interior; but Callistratus, the tutor of Demosthenes, states, with some probability, that the statues of DÆdalus received their motion from the mechanical powers. Beckmann is of opinion that the statues of DÆdalus differed only from those of the early Greeks and Egyptians in having their eyes open and their feet and hands free, and that the reclining posture of some, and the attitude of others, “as if ready to walk,” gave rise to the exaggeration that they possessed the power of locomotion. This opinion, however, cannot be maintained with any show of reason; for if we apply such a principle in one case, we must apply it in all, and the mind would be left in a state of utter scepticism respecting the inventions of ancient times.

We are informed by Aulus Gellius, on the authority of Favorinus, that Archytas of Tarentum, who flourished about four hundred years before Christ, constructed a wooden pigeon that was capable of flying. Favorinus relates that, when it had once alighted, it could not again resume its flight; and Aulus Gellius adds, that it was suspended by balancing, and animated by a concealed aura, or spirit.

Among the earliest pieces of modern mechanism was the curious water-clock presented to Charlemagne by the Kaliph Haroun al Raschid. In the dial-plate there were twelve small windows corresponding with the divisions of the hours. The hours were indicated by the opening of the windows, which let out little metallic balls, which struck the hour by falling upon a brazen bell. The doors continued open till twelve o’clock, when twelve little knights, mounted on horseback, came out at the same instant, and after parading round the dial, shut all the windows and returned to their apartments.32

The next automata of which any distinct account has been preserved are those of the celebrated John Muller, Regiomontanus, which have been mentioned by Kircher, Baptista Porta, Gassendi, Lana, and Bishop Wilkins. This philosopher is said to have constructed an artificial eagle, which flew to meet the Emperor Maximilian when he arrived at Nuremberg on the 7th June, 1740. After soaring aloft in the air, the eagle is stated to have met the Emperor at some distance from the city, and to have returned and perched upon the town gate, where it waited his approach. When the Emperor reached the gate, the eagle stretched out its wings, and saluted him by an inclination of its body. Muller is likewise reported to have constructed an iron fly which was put in motion by wheel-work, and which flew about and leapt upon the table. At an entertainment given by this philosopher to some of his familiar friends, the fly flew from his hand, and after performing a considerable round, it returned again to the hand of its master.

The Emperor Charles V., after his abdication of the throne, amused himself in his later years with automata of various kinds. The artist whom he employed was Janellus Turrianus of Cremona. It was his custom after dinner to introduce upon the table figures of armed men and horses. Some of these beat drums, others played upon flutes, while a third set attacked each other with spears. Sometimes he let fly wooden sparrows, which flew back again to their nest. He also exhibited corn-mills so extremely small that they could be concealed in a glove, yet so powerful that they could grind in a day as much corn as would supply eight men with food for a day.

The next piece of mechanism of sufficient interest to merit our attention is that which was made by M. Camus, for the amusement of Louis XIV. when a child. It consisted of a small coach, which was drawn by two horses, and which contained the figure of a lady within, with a footman and page behind. When this machine was placed at the extremity of a table of the proper size, the coachman smacked his whip, and the horses instantly set off, moving their legs in a natural manner, and drawing the coach after them: when the coach reached the opposite edge of the table, it turned sharply at a right angle, and proceeded along the adjacent edge. As soon as it arrived opposite the place where the king sat, it stopped; the page descended and opened the coach-door; the lady alighted, and with a curtsey presented a petition, which she held in her hand to the king. After waiting some time she again curtsied and re-entered the carriage. The page closed the door, and having resumed his place behind, the coachman whipped his horses and drove on. The footman, who had previously alighted, ran after the carriage and jumped up behind into his former place.

Not content with imitating the movements of animals, the mechanical genius of the 17th and 18th centuries ventured to perform by wheels and pinions the functions of vitality. We are informed by M. Lobat, that Gen. Degennes, a French officer who defended the colony of St. Christopher’s against the English forces, constructed a peacock which could walk about as if alive, pick up grains of corn from the ground, digest them as if they had been submitted to the action of the stomach, and afterwards discharged them in an altered form. Degennes is said to have invented various machines of great use in navigation and gunnery, and to have constructed clocks without weights or springs.

The automaton of Degennes probably suggested to M. Vaucanson the idea of constructing his celebrated duck, which excited so much interest throughout Europe, and which was perhaps the most wonderful piece of mechanism that was ever made. Vaucanson’s duck exactly resembled the living animal in size and appearance. It executed accurately all its movements and gestures, it ate and drank with avidity, performed all the quick motions of the head and throat which are peculiar to the living animal, and, like it, it muddled the water which it drank with its bill. It produced also the sound of quacking in the most natural manner. In the anatomical structure of the duck, the artist exhibited the highest skill. Every bone in the real duck had its representative in the automaton, and its wings were anatomically exact. Every cavity, apophysis, and curvature was imitated, and each bone executed its proper movements. When corn was thrown down before it, the duck stretched out its neck to pick it up, it swallowed it, digested it, and discharged it in a digested condition. The process of digestion was effected by chemical solution, and not by trituration, and the food digested in the stomach was conveyed away by tubes to the place of its discharge.

The automata of Vaucanson were imitated by one Du Moulin, a silversmith, who travelled with them through Germany in 1752, and who died at Moscow in 1765. Beckmann informs us that he saw several of them after the machinery had been deranged; but that the artificial duck, which he regarded as the most ingenious, was still able to eat, drink, and move. Its ribs, which were made of wire, were covered with duck’s feathers, and the motion was communicated through the feet of the duck by means of a cylinder and fine chains like that of a watch.

Fig. 66.
Fig. 67.

Ingenious as all these machines are, they sink into insignificance when compared with the automaton chess-player, which for a long time astonished and delighted the whole of Europe. In the year 1769, M. Kempelen, a gentleman of Presburg in Hungary, constructed an automaton chess-player, the general appearance of which is shown in the annexed figures. The chess-player is a figure as large as life, clothed in a Turkish dress, sitting behind a large square chest or box, three feet and a half long, two feet deep, and two and a half high. The machine runs on castors, and is either seen on the floor when the doors of the apartment are thrown open, or is wheeled into the room previously to the commencement of the exhibition. The Turkish chess-player sits on a chair fixed to the square chest: his right arm rests on the table, and in the left he holds a pipe, which is removed during the game, as it is with this hand that he makes the moves. A chess-board, eighteen inches square, and bearing the usual number of pieces, is placed before the figure. The exhibitor then announces to the spectators his intention of showing them the mechanism of the automaton. For this purpose he unlocks the door A, Fig. 66, and exposes to view a small cupboard lined with black or dark-coloured cloth, and containing cylinders, levers, wheels, pinions, and different pieces of machinery, which have the appearance of occupying the whole space. He next opens the door B, Fig. 67, at the back of the same cupboard, and holding a lighted candle at the opening, he still further displays the inclosed machinery to the spectators, placed in front of A, Fig. 66. When the candle is withdrawn, the door B is then locked; and the exhibitor proceeds to open the drawer G G, Fig. 66, in front of the chest. Out of this drawer he takes a small box of counters, a set of chess-men, and a cushion for the support of the automaton’s arm, as if this was the sole object of the drawer. The two front doors C C, of the large cupboard, Fig. 66, are then opened, and at the back-door D of the same cupboard, Fig. 67, the exhibitor applies a lighted candle, as before, for the purpose of showing its interior, which is lined with dark cloth like the other, and contains only a few pieces of machinery. The chest is now wheeled round, as in Fig. 67: the garments of the figure are lifted up, and the door E in the trunk, and another door F in the thigh, are opened, the doors B and D having been previously closed. When this exhibition of the interior of the machine is over, the chest is wheeled back into its original position on the floor. The doors A, C, C, in front, and the drawer G, G, are closed and locked, and the exhibitor, after occupying himself for some time at the back of the chest, as if he were adjusting the mechanism, removes the pipe from the hand of the figure, and winds up the machinery.

The automaton is now ready to play, and when an opponent has been found among the company, the figure takes the first move. At every move made by the automaton, the wheels of the machine are heard in action; the figure moves its head, and seems to look over every part of the chess-board. When it gives check to its opponent, it shakes its head thrice, and only twice when it checks the queen. It likewise shakes its head when a false move is made, replaces the adversary’s piece on the square from which it was taken, and takes the next move itself. In general, though not always, the automaton wins the game.

During the progress of the game, the exhibitor often stands near the machine, and winds it up like a clock, after it has made ten or twelve moves. At other times he went to a corner of the room, as if it were to consult a small square box, which stood open for this purpose.

The chess-playing machine, as thus described, was exhibited after its completion in Presburg, Vienna, and Paris, to thousands, and in 1783 and 1784 it was exhibited in London and different parts of England, without the secret of its movements having been discovered. Its ingenious inventor, who was a gentleman and a man of education, never pretended that the automaton itself really played the game. On the contrary, he distinctly stated, “that the machine was a bagatelle, which was not without merit in point of mechanism, but that the effects of it appeared so marvellous only from the boldness of the conception, and the fortunate choice of the methods adopted for promoting the illusion.”

Upon considering the operations of this automaton, it must have been obvious that the game of chess was performed either by a person enclosed in the chest, or by the exhibitor himself. The first of these hypotheses was ingeniously excluded by the display of the interior of the machine, for as every part contained more or less machinery, the spectator invariably concluded that the smallest dwarf could not be accommodated within, and this idea was strengthened by the circumstance, that no person of this description could be discovered in the suite of the exhibitor. Hence the conclusion was drawn, that the exhibitor actuated the machine either by mechanical means conveyed through its feet, or by a magnet concealed in the body of the exhibitor. That mechanical communication was not formed between the exhibitor and the figure, was obvious from the fact, that no such communication was visible, and that it was not necessary to place the machine on any particular part of the floor. Hence the opinion became very prevalent that the agent was a magnet; but even this supposition was excluded, for the exhibitor allowed a strong and well-armed loadstone to be placed upon the machine during the progress of the game. Had the moving power been a magnet, the whole action of the machine would have been deranged by the approximation of a loadstone concealed in the pockets of any of the spectators.

As Baron Kempelen himself had admitted that there was an illusion connected with the performance of the automaton, various persons resumed the original conjecture, that it was actuated by a person concealed in its interior, who either played the game of chess himself, or performed the moves which the exhibitor indicated by signals. A Mr. J. F. Freyhere, of Dresden, published a book on the subject in 1789, in which he endeavoured to explain, by coloured plates, how the effect was produced; and he concluded, “that a well-taught boy very thin and tall of his age (sufficiently so that he could be concealed in a drawer almost immediately under the chess-board), agitated the whole.”

In another pamphlet, which had been previously published at Paris in 1785, the author not only supposed that the machine was put in motion by a dwarf, a famous chess-player; but he goes so far as to explain the manner in which he could be accommodated within the machine. The invisibility of the dwarf when the doors were opened was explained by his legs and thighs being concealed in two hollow cylinders, while the rest of his body was out of the box, and hid by the petticoats of the automaton. When the doors were shut, the clacks produced by the swivel of a ratchet-wheel permitted the dwarf to change his place, and return to the box unheard; and while the machine is wheeled about the room, the dwarf had an opportunity of shutting the trap through which he passed into the machine. The interior of the figure was next shown, and the spectators were satisfied that the box contained no living agent.

Although these views were very plausible, yet they were never generally adopted; and when the automaton was exhibited in Great Britain in 1819 and 1820, by M. Maelzel, it excited as intense an interest as when it was first produced in Germany. There can be little doubt, however, that the secret has been discovered; and an anonymous writer has shown in a pamphlet, entitled “An attempt to analyse the Automaton Chess-player of M. Kempelen,” that it is capable of accommodating an ordinary sized man; and he has explained in the clearest manner how the inclosed player takes all the different positions, and performs all the motions which are necessary to produce the effects actually observed. The following is the substance of his observations:—The drawer G G when closed does not extend to the back of the chest, but leaves a space O, behind it (see Figs. 74, 75, and 76), fourteen inches broad, eight inches high, and three feet eleven inches long. This space is never exposed to the view of spectators. The small cupboard seen at A is divided into two parts, by a door or screen I, Fig. 73, which is moveable upon a hinge, and is so constructed that it closes at the same instant that B is closed. The whole of the front compartment as far as I is occupied with the machinery H. The other compartment behind I is empty, and communicates with the space O behind the drawer, the floor of this division being removed. The back of the great cupboard C C is double, and the part P Q, to which the quadrants are attached, moves on a joint Q, at the upper part, and forms when raised an opening S, between the two cupboards, by carrying with it part of the partition R, which consists of cloth tightly stretched. The false back is shown closed in Fig. 74, while Fig. 75 shows the same back raised, so as to form the opening S between the chambers.

When the spectator is allowed to look into the trunk of the figure by lifting up the dress, as in Fig. 75, it will be observed that a great part of the space is occupied by an inner trunk N, Figs. 75, 76, which passes off to the back in the form of an arch, and conceals from the spectators a portion of the interior. This inner trunk N opens and communicates with the chest by an aperture T, Fig. 77, about twelve inches broad and fifteen high. When the false back is raised, the two cupboards, the trunk N, and the space O behind the drawer, are all connected together.

No. 68.
No. 69.

The construction of the interior being thus understood, the chess-player may be introduced into the chest through the sliding panel U, Fig. 74. He will then raise the false back of the large cupboard, and assume the position represented by the shaded figure in Figs. 68 and 69. Things being in this state, the exhibitor is ready to begin his process of deception. He first opens the door A of the small cupboard, and from the crowded and very ingenious disposition of the machinery within it, the eye is unable to penetrate far beyond the opening, and the spectator concludes, without any hesitation, that the whole of the cupboard is filled, as it appears to be, with similar machinery. This false conclusion is greatly corroborated by observing the glimmering light which plays among the wheel-work when the door B is opened, and a candle held at the opening. This mode of exhibiting the interior of the cupboard satisfies the spectator also, that no opaque body, capable of holding or concealing any of the parts of a hidden agent, is interposed between the light and the observer. The door B is now locked and the screen I closed, and as this is done at the time that the light is withdrawn, it will wholly escape observation.

The door B is so constructed as to close by its own weight, but as the head of the chess-player will soon be placed very near it, the secret would be disclosed if, in turning round, the chest door should by any accident fly open. This accident is prevented by turning the key, and, lest this little circumstance should excite notice, it would probably be regarded as accidental, as the keys were immediately wanted for the other locks.

As soon as the door B is locked, and the screen I closed, the secret is no longer exposed to hazard, and the exhibitor proceeds to lead the minds of the spectators still farther from the real state of things. The door A is left open to confirm the opinion that no person is concealed within, and that nothing can take place in the interior without being observed.

Fig. 70.

The drawer GG is now opened, apparently for the purpose of looking at the chess-men, cushion, and counters, which it contains; but the real object of it is to give time to the player to change his position, as shown in the annexed figure, and to replace the false back and partition preparatory to the opening of the great cupboard. The chess-player, as the figure shows, occupies with his body the back compartment of the small cupboard, while his legs and thighs are contained in the space O, behind the drawer GG, his body being concealed by the screen I, and his limbs by the drawer GG.

The great cupboard CC is now opened, and there is so little machinery in it, that the eye instantly discovers that no person is concealed in it. To make this more certain, however, a door is opened at the back, and a lighted candle held to it, to allow the spectators to explore every corner and recess.

The front doors of the great and small cupboard being left open, the chest is wheeled round to show the trunk of the figure, and the bunch of keys is allowed to remain in the door D, as the apparent carelessness of such a proceeding will help to remove any suspicion which may have been excited by the locking of the door B.

When the drapery of the figure has been raised, and the doors E and F in the trunk and thigh opened, the chest is wheeled round again into its original position, and the doors E and F closed. In the mean time the player withdraws his legs from behind the drawer, as he cannot so easily do this when the drawer GG is pushed in.

In all these operations, the spectator flatters himself that he has seen in succession every part of the chest, while in reality some parts have been wholly concealed from his view, and others but imperfectly shown, while at the present time nearly half of the chest is excluded from view.

No. 71.
No. 72.

When the drawer G G is pushed in, and the doors A and C closed, the exhibitor adjusts the machinery at the back, in order to give time to the player to take the position shown in a front view in Fig. 71, and in profile in Fig. 72. In this position he will experience no difficulty in executing every movement made by the automaton. As his head is above the chess-board, he will see through the waistcoat of the figure, as easily as through a veil, the whole of the pieces on the board, and he can easily take up and put down a chess-man without any other mechanism than that of a string communicating with the finger of the figure. His right hand, being within the chest, may be employed to keep in motion the wheel-work for producing the noise which is heard during the moves, and to perform the other movements of the figure, such as that of moving the head, tapping on the chest, &c.

A very ingenious contrivance is adopted to facilitate the introduction of the player’s left arm into the arm of the figure. To permit this, the arm of the figure requires to be drawn backwards; and for the purpose of concealing, and at the same time explaining this strained attitude, a pipe is ingeniously placed in the automaton’s hand. For this reason the pipe is not removed till all the other arrangements are completed. When every thing has been thus prepared, the pipe is taken from the figure, and the exhibitor winds up, as it were, the inclosed machinery, for the double purpose of impressing upon the company the belief that the effect is produced by machinery, and of giving a signal to the player to put in motion the head of the automaton.

Fig. 73.
Fig. 74.

This ingenious explanation of the chess automaton is, our author states, greatly confirmed by the regular and undeviating mode of disclosing the interior of the chest; and he also shows that the facts which have been observed respecting the winding up of the machine, “afford positive proof that the axis turned by the key is quite free and unconnected either with a spring or weight, or any system of machinery.”

In order to make the preceding description more intelligible, I shall add the following more detailed explanation of the figures.

Fig. 66 is a perspective view of the automaton seen in front with all the doors thrown open.

Fig. 67 is an elevation of the automaton, as seen from behind.

Fig. 68 is an elevation of the front of the chest, the shaded figure representing the inclosed player in his first position, or when the door A is opened.

Fig. 69 is a side elevation, the shaded figure representing the player in the same position.

Fig. 70 is a front elevation, the shaded figure showing the player in his second position, or that which he takes after the door B and screen I are closed, and the great cupboard opened.

Fig. 71 is a front elevation, the shaded figure showing the player in his third position, or that in which he plays the game.

Fig. 72 is a side elevation showing the figure in the same position.

Fig. 73 is a horizontal section of the chest through the line WW in Fig. 71.

Fig. 74 is a vertical section of the chest through the line XX in Fig. 73.

Fig. 75.
Fig. 76.

Fig. 75 is a vertical section through the line YY Fig. 71, showing the false back closed.

Fig. 76 is a similar vertical section showing the false back raised.

The following letters of reference are employed in all the figures:—

A. Front door of the small cupboard.

B. Back door of ditto.

C C. Front doors of large cupboard.

D. Back door of ditto.

E. Door of ditto.

F. Door of the thigh.

G G. The drawer.

H. Machinery in front of the small cupboard.

I. Screen behind the machinery.

K. Opening caused by the removal of part of the floor of the small cupboard.

L. A box which serves to conceal an opening in the floor of the large cupboard, made to facilitate the first position; and which also serves as a seat for the third position.

M. A similar box to receive the toes of the player in the first position.

N. The inner chest filling up part of the trunk.

O. The space behind the drawer.

P Q. The false back turning on a joint at Q.

R. Part of the partition formed of cloth stretched tight, which is carried up by the false back to form the opening between the chambers.

S. The opening between the chambers.

T. The opening connecting the trunk and chest, which is partly concealed by the false back.

U. Panel which is slipt aside to admit the player.


Various pieces of mechanism of wonderful ingenuity have been constructed for the purposes of drawing and writing. One of these, invented by M. Le Droz, the son of the celebrated Droz of Chaux le Fonds, has been described by Mr. Collinson. The figure was the size of life. It held in its hand a metallic style, and when a spring was touched, so as to release a detent, the figure immediately began to draw upon a card of Dutch vellum previously laid under its hand. After the drawing was executed on the first card, the figure rested. Other five cards were then put in, in succession, and upon these it delineated in the same manner different subjects. On the first card it drew “elegant portraits and likenesses of the king and queen facing each other;” and Mr. Collinson remarks, that it was curious to observe with what precision the figure lifted up its pencil in its transition from one point of the drawing to another, without making the slightest mistake.

M. Maillardet has executed an automaton which both writes and draws. The figure of a boy kneeling on one knee holds a pencil in his hand. When the figure begins to work, an attendant dips the pencil in ink, and adjusts the drawing-paper upon a brass tablet. Upon touching a spring, the figure proceeds to write, and when the line is finished, its hand returns to dot and stroke the letters when necessary. In this manner it executes four beautiful pieces of writing in French and English, and three landscapes, all of which occupy about one hour.

One of the most popular pieces of mechanism which we have seen is the magician constructed by M. Maillardet for the purpose of answering certain given questions. A figure dressed like a magician appears seated at the bottom of a wall, holding a wand in one hand, and a book in the other. A number of questions ready prepared are inscribed on oval medallions, and the spectator takes any of these which he chooses, and to which he wishes an answer, and having placed it in a drawer ready to receive it, the drawer shuts with a spring till the answer is returned. The magician then rises from his seat, bows his head, describes circles with his wand, and, consulting the book as if in deep thought, he lifts it towards his face. Having thus appeared to ponder over the proposed question, he raises his wand, and striking with it the wall above his head, two folding-doors fly open, and display an appropriate answer to the question. The doors again close, the magician resumes his original position, and the drawer opens to return the medallion. There are twenty of these medallions, all containing different questions, to which the magician returns the most suitable and striking answers. The medallions are thin plates of brass of an elliptical form, exactly resembling each other. Some of the medallions have a question inscribed on each side, both of which the magician answers in succession. If the drawer is shut without a medallion being put into it, or if a blank medallion, viz., one which contains no question, is put into the drawer, the magician rises, consults his book, shakes his head, and resumes his seat. The folding-doors remain shut, and the drawer is returned empty. If two medallions are put into the drawer together, an answer is returned only to the lower one. When the machinery is wound up, the movements continue about an hour, during which time about fifty questions may be answered. The method by which the different medallions acted upon the machinery, so as to produce the proper answers to the questions which they bore, was of course kept a secret by the inventor, but it was discovered by Mr. Brockedon, who has kindly communicated to me an account of it.

Upon examining the edge of the circular medallions, Mr. Brockedon discovered in all of them, except the blanks, a small hole almost concealed by the milling. This led Mr. Brockedon to examine the receptacle for the medallion in the drawer, and he observed the edge of a pin flush with the edge of the receptacle, whence the pin was protruded by the machine into the holes in the medallion, the depth of the hole regulating the answer. In order to prove this, Mr. B. cut a slip from a cedar pencil small enough to enter easily the holes in the medallion, if he found them to be of different depths. As the blank medallions had no hole, and produced only a shake of the magician’s head, Mr. B. took a medallion with a question, and having plugged the hole with a bit of cedar, he cut it flush, and having placed it in the receptacle, the conjuror shook his head, and thus bore testimony to the truth of Mr. Brockedon’s discovery.

M. Maillardet has constructed various other automata, representing insects and other animals. One of these was a spider entirely made of steel, which exhibited all the movements of the animal. It ran on the surface of a table during three minutes, and to prevent it from running off, its course always tended towards the centre of the table. He constructed likewise a caterpillar, a lizard, a mouse, and a serpent. The serpent crawls about in every direction, opens its mouth, hisses, and darts out its tongue.

Ingenious and beautiful as all these pieces of mechanism are, and surprising as their effects appear even to scientific spectators, the principal object of their inventors was to astonish and amuse the public. We should form an erroneous judgment, however, if we suppose that this was the only result of the ingenuity which they displayed. The passion for automatic exhibitions, which characterized the 18th century, gave rise to the most ingenious mechanical devices, and introduced among the higher orders of artists habits of nice and accurate execution in the formation of the most delicate pieces of machinery. The same combination of the mechanical powers which made the spider crawl, or which waved the tiny rod of the magician, contributed in future years to purposes of higher import. Those wheels and pinions, which almost eluded our senses by their minuteness, re-appeared in the stupendous mechanism of our spinning-machines and our steam-engines. The elements of the tumbling-puppet were revived in the chronometer, which now conducts our navy through the ocean; and the shapeless wheel which directed the hand of the drawing automaton has served, in the present age, to guide the movements of the tambouring engine. Those mechanical wonders, which in one century enriched only the conjuror who used them, contributed in another to augment the wealth of the nation; and those automatic toys, which once amused the vulgar, are now employed in extending the power and promoting the civilization of our species. In whatever way, indeed, the power of genius may invent or combine, and to whatever low or even ludicrous purposes that invention or combination may be originally applied, society receives a gift which it can never lose; and though the value of the seed may not be at once recognized, and though it may lie long unproductive in the ungenial till of human knowledge, it will some time or other evolve its germ, and yield to mankind its natural and abundant harvest.

Did the limits of so popular a volume as this ought to be permit it, I should have proceeded to give a general description of some of these extraordinary pieces of machinery, the construction and effects of which never fail to strike the spectator with surprise. This, however, would lead me into a field too extensive, and I shall therefore confine myself to a notice of three very remarkable pieces of mechanism which are at present very little known to the general reader, viz., the tambouring machine of Mr. Duncan, the statue-turning machine of Mr. Watt, and the calculating machinery of Mr. Babbage.

The tambouring of muslins, or the art of producing upon them ornamental flowers and figures, has been long known and practised in Britain as well as in other countries; but it was not long before the year 1790, that it became an object of general manufacture in the west of Scotland, where it was chiefly carried on. At first it was under the direction of foreigners; but their aid was not long necessary, and it speedily extended to such a degree as to occupy, either wholly or partially, more than 20,000 females. Many of these labourers lived in the neighbourhood of Glasgow, which was the chief seat of the manufacture; but others were scattered through every part of Scotland, and supplied by agents with work and money. In Glasgow, a tambourer of ordinary skill could not in general earn more than five or six shillings a week by constant application; but to a labouring artisan, who had several daughters, even these low wages formed a source of great wealth. At the age of five years, a child capable of handling a needle was devoted to tambouring, even though it could not earn more than a shilling or two in a week; and the consequence of this was, that female children were taken from school, and rendered totally unfit for any social or domestic duty. The tambouring population, was, therefore, of the worst kind, and it must have been regarded as a blessing rather than as a calamity, when the work which they performed was entrusted to regular machinery.

Mr. John Duncan of Glasgow, the inventor of the tambouring machinery, was one of those unfortunate individuals who benefit their species without benefiting themselves, and who died in the meridian of life, the victim of poverty and of national ingratitude. He conceived the idea of bringing into action a great number of needles at the same time, in order to shorten the process by manual labour; but he at first was perplexed about the diversification of the pattern. This difficulty, however, he soon surmounted by employing two forces at right angles to each other, which gave him a new force in the direction of the diagonal of the parallelogram, whose sides were formed by the original forces. His first machine was very imperfect; but after two years’ study, he formed a company, at whose expense six improved machines were put in action, and who secured the invention by a patent. At this time the idea of rendering the machine automatic had scarcely occurred to him; but he afterwards succeeded in accomplishing this great object, and the tambouring machines were placed under the surveillance of a steam-engine. Another patent was taken for these improvements. The reader who desires to have a minute account of these improvements, and of the various parts of the machinery, will be amply gratified by perusing the inventor’s own account of the machinery in the article Chainwork in the Edinburgh EncyclopÆdia. At present it will be sufficient to state, that the muslin to be tamboured was suspended vertically in a frame, which was capable of being moved both in a vertical and a horizontal direction. Sixty or more needles lying horizontally occupied a frame in front of the muslin web. Each of these working needles, as they are called, was attended by a feeding-needle, which, by a circular motion round the working-needle, lodged upon the stem of the latter the loop of the thread. The sixty needles then penetrated the web, and, in order that they might return again without injuring the fabric, the barb or eye of the needle, which resembled the barb of a fishing-hook, was shut by a slider. The muslin web then took a new position by means of the machinery that gave it its horizontal and vertical motion, so that the sixty needles penetrated it, at their next movement, at another point of the figure or flower. This operation went on till sixty flowers were completed. The web was then slightly wound up, that the needles might be opposite that part of it on which they were to work another row of flowers.

The flowers were generally at an inch distance, and the rows were placed so that the flowers formed what are called diamonds. There were seventy-two rows of flowers in a yard, so that in every square yard there were nearly 4000 flowers, and in every piece of ten yards long 40,000. The number of loops or stitches in a flower varied with the pattern, but on an average there were about thirty. Hence the number of stitches in a yard were 120,000, and the number in a piece is 1,200,000. The average work done in a week by one machine was fifteen yards, or 60,000 flowers, or 1,800,000 stitches; and by comparing this with the work done by one person with the hand, it appeared that the machine enabled one person to do the work of twenty-four persons.

One of the most curious and important applications of machinery to the arts which has been suggested in modern times, was made by the late Mr. Watt, in the construction of a machine for copying or reducing statues and sculpture of all kinds. The art of multiplying busts and statues, by casts in plaster of Paris, has been the means of diffusing a knowledge of this branch of the fine arts; but from the fragile nature of the material, the copies thus produced were unfit for exposure to the weather, and therefore ill calculated for ornamenting public buildings, or for perpetuating the memory of public achievements. A machine, therefore, which is capable of multiplying the labours of the sculptor in the durable materials of marble or of brass was a desideratum of the highest value, and one which could have been expected only from a genius of the first order. During many years Mr. Watt carried on his labours in secret, and he concealed even his intention of constructing such a machine. After he had made considerable progress in its execution, and had thought of securing his invention by a patent, he learned that an ingenious individual in his own neighbourhood had been long occupied in the same pursuit; and Mr. Watt informed me that he had every reason to believe that this gentleman was entirely ignorant of his labours. A proposal was then made that the two inventors should combine their talents, and secure the privilege by a joint patent; but Mr. Watt had experienced so frequently the fatal operation of our patent laws, that he saw many difficulties in the way of such an arrangement, and he was unwilling, at his advanced age, to embark in a project so extensive, and which seemed to require for its successful prosecution all the ardour and ambition of a youthful mind. The scheme was therefore abandoned; and such is the unfortunate operation of our patent laws, that the circumstance of two individuals having made the same invention has prevented both from bringing it to perfection, and conferring a great practical benefit upon their species. The machine which Mr. Watt had constructed had actually executed some excellent pieces of work. I have seen in his house at Heathfield copies of basso-relievos, and complete statues of a small size; and some of his friends have in their possession other specimens of its performance.

Of all the machines which have been constructed in modern times, the calculating-machine is doubtless the most extraordinary. Pieces of mechanism for performing particular arithmetical operations have been long ago constructed, but these bear no comparison either in ingenuity or in magnitude to the grand design conceived and nearly executed by Mr. Babbage. Great as the power of mechanism is known to be, yet we venture to say, that many of the most intelligent of our readers will scarcely admit it to be possible that astronomical and navigation tables can be accurately computed by machinery; that the machine can itself correct the errors which it may commit; and that the results of its calculations, when absolutely free from error, can be printed off, without the aid of human hands, or the operation of human intelligence. All this, however, Mr. Babbage’s machine can do; and as I have had the advantage of seeing it actually calculate, and of studying its construction with Mr. Babbage himself, I am able to make the above statement on personal observation. The calculating machine now constructing under the superintendence of the inventor has been executed at the expense of the British Government, and is of course their property. It consists essentially of two parts; a calculating part, and a printing part, both of which are necessary to the fulfilment of Mr. Babbage’s views; for the whole advantage would be lost if the computations made by the machine were copied by human hands and transferred to types by the common process. The greater part of the calculating machinery is already constructed, and exhibits workmanship of such extraordinary skill and beauty, that nothing approaching to it has been witnessed. In order to execute it, particularly those parts of the apparatus which are dissimilar to any used in ordinary mechanical constructions, tools and machinery of great expense and complexity have been invented and constructed; and in many instances contrivances of singular ingenuity have been resorted to which cannot fail to prove extensively useful in various branches of the mechanical arts.

The drawings of this machinery, which form a large part of the work, and on which all the contrivance has been bestowed, and all the alterations made, cover upwards of 400 square feet of surface, and are executed with extraordinary care and precision.

In so complex a piece of mechanism, in which interrupted motions are propagated simultaneously along a great variety of trains of mechanism, it might have been supposed that obstructions would arise, or even incompatibilities occur, from the impracticability of foreseeing all the possible combinations of the parts; but this doubt has been entirely removed, by the constant employment of a system of mechanical notation invented by Mr. Babbage, which places distinctly in view, at every instant, the progress of motion through all the parts of this or any other machine, and by writing down in tables the times required for all the movements, this method renders it easy to avoid all risk of two opposite actions arriving at the same instant at any part of the engine.

In the printing part of the machine less progress has been made in the actual execution than in the calculating part. The cause of this is the greater difficulty of its contrivance, not for transferring the computations from the calculating part to the copper or other plate destined to receive it, but for giving to the plate itself that number and variety of movements which the forms adopted in printed tables may call for in practice.

The practical object of the calculating engine is to compute and print a great variety and extent of astronomical and navigation tables, which could not be done without enormous intellectual and manual labour, and which, even if executed by such labour, could not be calculated with the requisite accuracy. Mathematicians, astronomers, and navigators, do not require to be informed of the real value of such tables; but it may be proper to state, for the information of others, that seventeen large folio volumes of logarithmic tables alone were calculated, at an enormous expense, by the French Government; and that the British Government regarded these tables to be of such national value, that they proposed to the French Board of Longitude to print an abridgement of them at the joint expense of the two nations, and offered to advance 5000l. for that purpose. Besides logarithmic tables, Mr. Babbage’s machine will calculate tables of the powers and products of numbers, and all astronomical tables for determining the positions of the sun, moon, and planets; and the same mechanical principles have enabled him to integrate innumerable equations of finite differences, that is, when the equation of differences is given, he can, by setting an engine, produce at the end of a given time any distant term which may be required, or any succession of terms commencing at a distant point.

Besides the cheapness and celerity with which this machine will perform its work, the absolute accuracy of the printed results deserves especial notice. By peculiar contrivances, any small error produced by accidental dust, or by any slight inaccuracy in one of the wheels, is corrected as soon as it is transmitted to the next, and this is done in such a manner as effectually to prevent any accumulation of small errors from producing an erroneous figure in the result.

In order to convey some idea of this stupendous undertaking, we may mention the effects produced by a small trial engine constructed by the inventor, and by which he computed the following table from the formula x2 + x + 41. The figures, as they were calculated by the machine, were not exhibited to the eye as in sliding-rules and similar instruments, but were actually presented to the eye on two opposite sites of the machine, the number 383, for example, appearing in figures before the person employed in copying.

Table calculated by a small Trial Engine.
41 131 383 797 1373
43 151 421 853 1447
47 173 461 911 1523
53 197 503 971 1601
61 223 547 1033 1681
71 251 593 1097 1763
83 281 641 1163 1847
97 313 691 1231 1933
113 347 743 1301 2021

While the machine was occupied in calculating this table, a friend of the inventor undertook to write down the numbers as they appeared. In consequence of the copyist writing quickly, he rather more than kept pace with the engine, but as soon as five figures appeared, the machine was at least equal in speed to the writer. At another trial thirty-two numbers of the same table were calculated in the space of two minutes and thirty seconds; and as these contained eighty-two figures, the engine produced thirty-three figures every minute, or more than one figure in every two seconds. On another occasion it produced forty-four figures per minute. This rate of computation could be maintained for any length of time; and it is probable that few writers are able to copy with equal speed for many hours together.

Some of that class of individuals who envy all great men, and deny all great inventions, have ignorantly stated that Mr. Babbage’s invention is not new. The same persons, had it suited their purpose, would have maintained that the invention of spectacles was an anticipation of the telescope; but even this is more true than the allegation that the arithmetical machines of Pascal and others were the types of Mr. Babbage’s engine. The object of these machines was entirely different. Their highest functions were to perform the operations of common arithmetic. Mr. Babbage’s engine, it is true, can perform these operations also, and can extract the roots of numbers, and approximate to the roots of equations, and even to their impossible roots. But this is not its object. Its function, in contradistinction to that of all other contrivances for calculating, is to embody in machinery the method of differences, which has never before been done; and the effects which it is capable of producing, and the works which in the course of a few years we expect to see it execute, will place it at an infinite distance from all other efforts of mechanical genius.33


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page