CHAPTER FOUR Telling Time by the Water-Thief

Previous

Now we must take another backward step of thousands of years. In considering the subject of time-recording, it seems necessary to wear a pair of mental seven-league boots, for we must often pass back and forth over great periods at single strides. While men were still improving the sun-dial, its disadvantages were already recognized and search was being made for some other means of telling time.

Suppose, for example, that one had only a sun-dial about the house; how would one be able to tell time after sunset or on a dark day? How would one know the hour if he were surrounded by tall buildings or a thick growth of trees? And it might be very necessary to tell time under any of these conditions.

Then, again, merely as a question of accuracy, the sun-dial was not always reliable. It would get badly out of the way if used by travelers, since different markings were needed for different latitudes. While on shipboard the motion of the waves would cause the shadow to swing around in the most bewildering manner. Even under ideal conditions it was never absolutely exact, because the apparent motion of our steady-gaited old sun is not quite as dependable as most of us imagine.

Astronomers find that they must allow for what they call "equation of time" in order to make their calculations come out true. The question need not be discussed at this point, but it can be seen that, as humanity left its earliest care-free days and began to get busy, and hurried and anxious over its affairs, it came to feel that after all the sun-dial was not altogether sufficient for its needs.

For this reason we are now taking a third big backward step, returning, this time, not to the caveman but to ancient Babylon and Egypt, probably not less than twenty-seven hundred years ago and possibly much longer. In this way we meet the clepsydra.

The clepsydra was an interesting instrument, and it had an interesting name, which meant the "thief of water" and came from two Greek words meaning "thief" and "water"; you can trace this in our words "kleptomaniac" and "hydrant." We shall now examine a timepiece that was much more nearly a machine than was the simple shade-casting sun-dial.

The original idea was simple enough. At first, it was merely that of a vessel of water, having a small hole in the bottom, so that the liquid dripped out drop by drop. As the level within the jar was lowered, it showed the time upon a scale. Thus, if the hole were so small and the vessel were so large that it would require twenty-four hours for the water to drip away at an absolutely steady rate, it may be seen that the side of the vessel might easily have been marked with twenty-four divisions to indicate the hours. It may also be seen that the water would drip as rapidly at night or in shadow as in sunlight. And the clepsydra could be used indoors, which the sun-dial could not, although it required attention in that it must be regularly refilled and the orifice must always be kept completely open, because the slightest stoppage would retard the rate of dripping and the "clock" would run slow.

The sun, which, with the other heavenly bodies, had therefore been the sole reliance of the human race in its time-reckoning could now be ignored and the would-be timekeeper called to his aid another mighty servant from the forces of nature—that of gravitation.

The most interesting human fact, however, about the clepsydra is that it involved an entirely different conception of the marking of time. Now it was not so much a question of when as of how long. A good sun-dial set in a proper position would always indicate three o'clock when it was three o'clock, but the clepsydra might do no such thing. It would merely show how many hours had elapsed since last it was filled, and the steady drip, drip, drip of the escaping water could—and did—lower the surface quite as evenly at one time of day as at another.

We have already seen that the first purpose in marking time was merely for making appointments, but the clepsydra shows that, with its invention, mankind had already made some progress toward a new point of view. One important factor in this change was the very practical need of telling time at night, in stormy weather, or indoors, where the sun-dial could not be used. The clepsydra, on the other hand, worked equally well at any hour or place, and in all sorts of weather.

Nevertheless, it, too, proved to have certain faults. After a time, people noticed the interesting fact that water ran faster from a full vessel than from one which was nearly empty; this was, of course, because of the greater pressure. Since such a variation interfered with calculations, they hit upon the idea of a double vessel; the larger one below containing a float which rose as the vessel filled, thus marking the hours upon the scale, and the smaller one above, the one from which the water dripped, being kept constantly filled to the point of overflow.

This improved form of clepsydra opened a field of fascinating possibilities in time-recording—it gave the chance to make use of a machine. There is, perhaps, no more interesting point in studying human development than to see the steady, inevitable way in which mankind from its cave-dwelling days has tended toward machinery. Roughly, this progress may be characterized as of three stages.

First. Primitive man—an upright-standing animal, naked, unarmed, weak as compared with some creatures, slow as compared with others, clumsy as compared with still others—a creature with many physical disadvantages, but with the best brain in the animal kingdom.

Second. The tool-using man, who had begun to grasp weapons and to fashion implements, thus supplementing his natural abilities by artificial means.

Third. The machine-making man, who has fashioned to himself a mechanical "body" of incredible powers—that is to say, he has learned to intensify his own powers through artificial means which he has invented, as when he made the telescope to give himself greater vision; he has made inventions by means of which he can outrun the antelopes, outfly the birds, outswim the fishes, outgaze the eagles, and overmatch the elephants in sheer physical force—he can turn night into day, can send his voice across the continent, can strike crushing blows at a distance of many miles and can carry the movements of the stars in his pocket. Some phases of this third stage were foreshadowed when man first applied wheels and pulleys to his clepsydra.

Here, then, was water steadily raised or lowered by means of uniform dropping; here was a float whose motion was controlled by that of the water; here, in fact, was water-power with a means for applying it. Attach a cord to the float, cause it to turn a wheel by use of the pulley-principle, and the motion of the wheel would indicate the time. Still better, rig up a turning-pointer, increase its speed through the use of toothed gear-wheels, place it in front of a stationary disk divided to indicate the hours, and now the apparatus looked not unlike a modern clock. Or attach a bell and let it be caused to ring at a certain point in the motion—what was that but an alarm-clock? Ctesibus of Alexandra was the one who is believed first to have applied the toothed wheels to the clepsydra and this was about 140 B. C.

Clepsydra

Clepsydrae were expensive of course; accurate mechanical work was never cheap until modern times. Cunning craftsmen spent their time upon costly decorations, and these water-clocks became triumphs of the jeweler's art, a gift for kings. Therefore, like the sun-dial, they drifted into Rome—that vast maelstrom of the ancient world. Imagine a great walled city of low flat-roofed buildings, with fronts and porches of great columns, a town mostly of stone and much of it of marble, gleaming white under the bright Italian sun, the streets thronged with men in tunics and togas and here and there some person of importance driving by, standing erect in his chariot drawn by four horses harnessed abreast. And statues everywhere, in the streets and about the buildings and in cool courtyards and gardens among green leaves. The ancients thought of sculpture as an outdoor thing, and where we have one statue in the streets or public places of our cities, they had a hundred. We treasure the remains of them as artistic wonders in our museums, but they put them indoors and out as common ornaments, and lived among them.

Clepsydra

Presently we hear of the clepsydra being used in Roman law courts by command of Pompey, to limit the time of speakers. "This," says one writer of the day, "was to prevent babblings, that such as spoke ought to be brief in their speeches." It is not difficult to picture some pompous and tiresome togaed advocate, rolling out sonorous Latin syllables as he cites precedents and builds up arguments, while an unseen dropping checks the time against him, and to hear his indignant surprise—and the chuckles of his auditors—when the relentless water-clock cuts him short in the middle of some period. Martial, the Latin poet, referring to a tiresome speaker who repeatedly moistened his throat from a glass of water during the lengthy speech, suggested that it would be an equal relief to him and to his audience, if he were to drink from the clepsydra. But Roman lawyers were not guileless, and sometimes, so we are told, they tampered with the mechanical regulation or else introduced muddy water, which would run out more slowly.

This suggests one of the difficulties of the clepsydra. Still more serious was the fact that it would freeze on frosty nights. There were no Pearys among the ancient Romans; polar exploration interested them not at all; but they did spread their conquests into regions of colder weather—as when Julius Caesar mentions using the clepsydra to regulate the length of the night-watches in Britain. His keen mind noted by this means that the summer nights in Britain were shorter than those at Rome, a fact now known to be due to difference of latitude.

The Clepsydra, or Water Clock

The Clepsydra, or Water Clock

The Clepsydra, one of the earliest time-telling devices, was used in Roman law courts to limit the time of speakers and "to prevent babbling."

As late as the ninth century, a clepsydra was regarded as a princely gift. It is said, that the good caliph, Harun-al-Raschid, beloved by all readers of the "Arabian Nights," sent one of great beauty to Charlemagne, the Emperor of the West. Its case was elaborate, and, at the stroke of each hour, small doors opened to give passage to cavaliers. After the twelfth hour these cavaliers retired into the case. The striking apparatus consisted of small balls which dropped into a resounding basin underneath.

The clepsydra appears to have been used throughout the Middle Ages in some European countries, and it lingered along in Italy and France down to the close of the fifteenth century. Some of these water-clocks were plain tin tubes; some were hollow cups, each with a tiny hole at the bottom, which were placed in water and gradually filled and sank in a definite space of time.

When the clepsydra was introduced from Egypt into Greece, and later into Rome, one was considered enough for each town and was set in the market-place or some public square. It was carefully guarded by a civic officer, who religiously filled it at stated times. The nobility of the town and the wealthy people sent their servants to find out the exact time, while the poorer inhabitants were informed occasionally by the sound of the horn which was blown by the attendant of the clepsydra to denote the hour of changing the guard. This was much in the spirit of the calls of the watchmen in old England, and later in our New England, who were, in a way, walking clocks that shouted "Eleven o'clock and all's well," or whatever might be the hour.

Allowing for the fact that the clepsydra was none too accurate at the best and that its reservoir must occasionally be refilled, it can be seen that this early form of timepiece, having played its part, was ready to step off the stage when a more practical successor should arrive.

With one of its earliest successors we are familiar.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page