To prevent fires it is necessary to consider what are the principal causes of such calamities. These may be classed under several heads:— 1. Inattention in the use of fires and lights. 2. Improper construction of buildings, &c. 3. Furnaces or close fires for heating buildings, or for mechanical purposes. 4. Spontaneous ignition. 5. Incendiarism. As almost all fires arise from inattention in one shape or another, it is of the utmost importance that every master of a house or other establishment should persevere in rigidly enjoining and enforcing on those under him, the necessity of observing the utmost possible care in preventing such calamities, which, in nineteen cases out of twenty, are the result of remissness or inattention. Indeed, if any one will for a moment consider the fearful risk of life and property, which is often incurred from a very slight inattention, the necessity of vigilance and care will at once be apparent. Immense hazard is frequently incurred for the most trifling indulgences, and much property is annually destroyed, and valuable Some years ago, upwards of 100,000l. were lost, through the partner of a large establishment lighting gas with a piece of paper, which he threw away, and thus set fire to the premises, although it was a strict rule in the place that gas should only be lighted with tapers, which were provided for that purpose. In one department of a great public institution, it was, and is still, a rule that only covered lights should be carried about, and for that purpose four lanterns were provided; yet, on inquiry some time back, it was found that only one was entire, the other three being broken—one having lost two sides and the top; still they were all used as covered lights. The opportunities for inattention to fires and lights are so various, that it is impossible to notice the whole. One of the prevailing causes of fire is to be traced to persons locking their doors, and leaving their houses to the care of children. I believe one-half of the children whose deaths are occasioned by accident suffer from this cause alone: indeed, almost every week the newspapers contain some melancholy confirmation of what I have here stated. Intoxication is also a disgraceful and frequent cause of fire. The number of persons burned to death in this way is really incredible. It is true that it does not always happen that a fire takes place in the house, in either of the above cases, although the unfortunate beings whose clothes take fire, rarely escape with their lives; but the danger to the neighbourhood is at all times considerable, if persons in a state of inebriety are left in a house alone. When there is reason to apprehend that I do not mean to say that people must be actually drunk before danger is to be apprehended from them. Indeed, a very slight degree of inebriety is dangerous, as it always tends to blunt the perception, and to make a person careless and indifferent. I may also add, that no inconsiderable number of fires are occasioned by the thoughtless practice of throwing spirits into the fire. The dresses of females taking fire adds very much to the list of lives lost by fire, if it does not exceed all the other causes put together. Another very general cause of fire is that of approaching with lighted candles too near bed or window curtains; these, being generally quite dry, are, from the way in which they are hung, easily set on fire, and, as the flames ascend rapidly, when once touched, they are in a blaze in a moment. It is really astonishing to find that, with daily examples before their eyes, people should persist (whether insured or not seems to make little difference) in practices which, there is a hundred chances to one, may involve both themselves and the neighbourhood in one common ruin. Of this sort are the practices of looking under a bed with a lighted candle, and placing a screen full of clothes too near the fire. Houses not unfrequently take fire from cinders falling between the joints of the outer and inner hearths. When smoke is observed to arise from the floor, the cause should be immediately ascertained, and the inmates ought on no account to retire to rest while there is the slightest smell of fire, or any grounds to suspect danger from that cause. Occasional fires are caused by a very absurd method of extinguishing at night the fires kept in grates during the day. Instead of arranging the embers in the grate in such a way as to prevent their falling off, and thus allowing the fire to die out in its proper place, they are frequently taken off and laid on the hearth, where, should there be wood-work underneath, it becomes scorched, and the slightest spark falling through a joint in the stones sets it on fire. A very frequent cause of fire in shops and warehouses arises from the carelessness of the person intrusted to lock them up. It is no uncommon practice with those to whom this duty is intrusted, to light themselves out, or to search for any little article which may have been mislaid, with a lighted paper, and then to throw it carelessly on the floor, imagining they have taken every necessary precaution, merely by setting their foot upon it, forgetting that the current of air occasioned by shutting the door frequently rekindles it, and produces the most serious consequences. In warehouses and manufactories, fires are not unfrequently caused by the workmen being occasionally kept late at work. By the time their task is finished, the men are so tired and sleepy, that the extinguishing of fires and lights is done in a very careless manner. I recollect an instance of this sort, in which the flames were issuing from three upper windows, and observed by the neighbours, while the workmen engaged at their employment in the lower floors knew nothing of the destruction that was going on above. A very serious annual loss is also caused by want of due care in handing up or removing the goods in linen-drapers' shop windows when the gas is burning. Flues taking fire often result in mischief and it is believed that From what has been said, it will be seen that care and attention may do a very great deal towards the prevention of fire, and consequent loss of life. It is very easy to make good rules, and keep them for a time, after having been alarmed by some serious loss of property or life, but the difficulty is to maintain constant attention to the subject. The most evident plan for effecting this seems to be, for the masters thoroughly to examine and consider the subject at certain stated periods, not too far apart, and to constantly warn their domestics, workmen, or others, of the danger of the improper use of fires and lights. One of the greatest preventives of carelessness in the use of fires and lights would be a legal inquiry in every case, as it would not only show the faults that had been committed, and thus warn others, but the idea of being exposed in the newspapers would be another motive for increased care. This plan has been adopted in New York, and the reports of the proceedings of Mr. Baker, the "Fire Marshal," show that the inquiries there made have led to most useful results. Mr. Payne, the coroner, held inquests on fires in the City of London some years ago, but the authorities would not allow his expenses, and therefore they were given up, although believed to be highly advantageous in explaining accidental and others causes of fire. The improper construction of buildings more generally assists the spread than is the original cause of fires, although laying hearths on timber, and placing timber too near flues, One cause of danger from chimneys arises from the communication which they often have with each other in one gable. The divisions or partitions, being very often found in an imperfect state, the fire communicates to the adjoining chimney, and in this way sometimes wraps a whole tenement in flames. I know a division of a principal street in Edinburgh, in which there is scarcely a single chimney-head that is not more or less in this condition; and I have no doubt that this is not an uncommon case. There is also great danger from the ends of joists, safe-lintels, or other pieces of timber, being allowed to protrude into chimneys. In one instance which came under my notice, a flue passing under the recess of a window had on the upper side no other covering than the wood of the floor; of course, when the chimney took fire the floor was immediately in a blaze: but there are many instances of such carelessness. It is a common practice amongst carpenters to drive small pieces of wood into walls for the purpose of fixing their work, not paying the least attention as to whether the points run into the flues or not. In the repairs and alterations of old buildings, house-carpenters are, if possible, even more careless in this particular, than in the construction of new. I know of two different buildings which underwent some alterations. In both of these, safe-lintels had been run into flues, and both of them, after the alterations, took fire; the one in consequence of a foul chimney, which set fire to the lintel; and although the other did not take fire from the Great carelessness is frequently exhibited by builders, when erecting at one time two or three houses connected by mutual gables, by not carrying up the gables, or party-walls, so as to divide the roofs. I have seen more than one instance where the adjoining house would have been quite safe, but for this culpable neglect. It is no uncommon thing, too, to find houses divided only by lath and standard partitions, without a single brick in them. When a fire occurs in houses divided in this manner, the vacuities in the middle of the partitions act like so many funnels to conduct the flame, thereby greatly adding to the danger from the fire, and infinitely increasing the difficulty of extinguishing it. In London the Building Act forbids all such proceedings, but the District Surveyors do not seem to have sufficient power, or be able to pay sufficient attention to such matters, as they are constantly met with at fires. A very flagrant case of laying a hearth on timber was lately exposed by a fire in the City. Due notice was given of the circumstance, but no farther attention was paid to the matter than to make the proprietor construct the floor properly, although the Act gave power to fine for such neglect. The omission is to be regretted, as there could not have been a better case for warning others; it occurred in a very large establishment, and the work was done by one of the first builders in the City. Had this fire taken place in the night and gained some head, it would have been very difficult to have ascertained the cause. As the premises were situated, a serious loss of life might have occurred, the apartment in which the fire originated being the only means of retreat The Metropolitan Building Acts, up to about the year 1825, by insisting upon party-walls and other precautions, were invaluable for the prevention of the spread of fires. By them no warehouse was permitted to exceed a certain area. From the year 1842, the area has been exchanged for a specified number of cubic feet. But since 1825, a class of buildings has arisen of which there are now considerable numbers in the City, called Manchester or piece goods warehouses, which somehow have been exempted from the law restricting the extent of warehouses, on the plea that they are not warehouses, because "bulk is broken" in them, although it is thoroughly understood that the legislature intended by the Act to restrict the amassing such a quantity of goods under one roof as would be dangerous to the neighbourhood. Manchester and piece goods warehouses have for some time past been built in London of unlimited size, sometimes equal to twenty average houses. This is pretty nearly the same as if that number of houses were built without party-walls, only that it is much worse, for the whole mass generally communicates by well holes and open staircases, and thus takes fire with great rapidity, and, from the quantity of fresh air within the building, the fire makes much greater progress before it is discovered. By this means the risk of fire in the City has been greatly increased, not only to such warehouses themselves, but to the surrounding neighbourhood, for it is impossible to say how far fires of such magnitude may extend their ravages under untoward circumstances, there being at present no preventive power in Such buildings are also against the generally received rule, that a man may burn himself and his own property, but he shall not unduly risk the lives and property of his neighbours. The new Building Act is likely to repress, to a certain extent, this great evil, unless its meaning be subverted by some such subterfuge as destroyed the efficiency of the last one. But what is to be done with those which are already built? It may seem tedious to dwell so much on this subject, but it appears to be a risk which is not generally much thought of, though it is of the most vital importance to the safety of London. It is very desirable that the metropolis should take warning by the experience of Liverpool, without going through the fiery ordeal which the latter city did. From 1838 to 1843, 776,762l. were lost in Liverpool by fire, almost entirely in the warehouse risks. The consequence was, that the mercantile rates of insurance gradually rose from about 8s. per cent. to 30s., 40s., and, it is said, in some cases, to 45s. per cent. Such premiums could not be paid on wholesale transactions, therefore the Liverpool people themselves obtained an Act of Parliament, 6 and 7 Vic., cap. 109, by which the size and height of warehouses were restricted, party walls were made imperative, and warehouses were not allowed to be erected within thirty-six feet of any other warehouse, unless the whole of the doors and window-shutters were made of wrought iron, with many similar restrictions. This Act applied to warehouses already built as well as to those to be built, and any tenant was at liberty, There is another very common cause of fire, which seems to come under the head of construction—viz., covering up a fireplace when not in use with wood or paper and canvas, &c. The soot falls into the fireplace, either from the flue itself, or from an adjoining one which communicates with it. A neighbouring chimney takes fire; a spark falls down the blocked-up flue, sets fire to the soot in the fireplace, which smoulders till the covering is burned through, and thus sets fire to the premises. In theatres, that part of the house which includes the stage and scenery should be carefully divided from that where the spectators assemble by a solid wall carried up to, and through the roof. The opening in this wall for the stage should be arched over, and the other communications secured with iron doors, which would be kept shut while the audience was in the house. By this plan, there would be abundance of time for the spectators to retire, before fire could reach that part of the theatre which they occupy. The danger from furnaces or close fires, whether for heating, cooking, or manufacturing purposes, is very great, and no flue should be permitted to be so used, unless it is Heating by hot air, steam, and hot water are objectionable. First, because there must be a furnace and furnace flue, and the flue used is generally that built for an open fire only; and second, the pipes are carried in every direction, to be as much out of sight as possible. By this means they are constantly liable to produce spontaneous ignition, for there appears to be some chemical action between heated iron and timber, by which fire is generated at a much lower temperature than is necessary to ignite timber under ordinary circumstances. No satisfactory explanation of this fact has yet been given, but there is abundant proof that such is the case. In heating by hot-water pipes, those hermetically sealed are by far the most dangerous, as the strength of the pipes to resist the pressure is the only limit of the heat to which the water, and of course the pipes, may be raised. In some cases a plug of metal which fuses at 400° is put into the pipes, but the heat to which the plug is exposed will depend very much on where it is placed, as, however great may be the heat of the exit pipe, the return pipe is comparatively cool. But even where the pipes are left open, the heat of the water at the furnace is not necessarily 212°. It The New Metropolitan Building Act prescribes rules for the placing steam, hot-air, and hot-water pipes at a certain distance from timber; but as it must be extremely difficult for the District Surveyors to watch such minute proceedings, it becomes every one who is anxious for safety to see that the District Surveyors have due notice of any operation of this kind. Another cause of fire which may come under this head is the use of pipes for conveying away the products of combustion. Every one is acquainted with the danger of stove pipes, but all are not perhaps aware that pipes for conveying away the heat and effluvia from gas-burners are also very dangerous when placed near timber. It is not an uncommon practice to convey such pipes between the ceiling and the flooring of the floor above. This is highly dangerous. Gas-burners are also dangerous when placed near a ceiling. A remarkable instance of this took place lately, where a gas-burner set fire to a ceiling 28-1/2 inches from it. Another evil of furnaces is, that the original fireplace is sometimes not large enough to contain the apparatus, and the party wall is cut into. Perhaps it may be necessary to notice at this point the use of gas, as it is becoming so very Spontaneous ignition is believed to be a very fruitful cause of fires; but, unless the fire is discovered almost at the commencement, it is difficult to ascertain positively that this has been the cause. Spontaneous ignition is generally accelerated by natural or artificial heat. For instance, where substances liable to spontaneous ignition are exposed to the heat of the sun, to furnace flues, heated pipes, or are placed over apartments lighted by gas, the process of ignition proceeds much more rapidly than when in a cooler atmosphere. Sawdust in contact with vegetable oil is very likely to take fire. Cotton, cotton waste, hemp, and most other vegetable substances are alike dangerous. In one case oil and sawdust took fire within sixteen hours; in others, the same materials have lain for years, until some external heat has been applied to them. The greater number of the serious fires which have taken place in railroad stations in and near London have commenced in the paint stores. In a very large fire in an oil warehouse, a quantity of oil was spilt the day before and wiped up, the wipings being thrown These accidents may in a great measure be avoided by constant care and attention to cleanliness, and where paints and oils are necessary, by keeping them in some place outside the principal buildings. Dust-bins should, as much as possible, be placed in the open air, and where that cannot be done, they should be emptied once a day. No collection of rubbish or lumber of any sort should be allowed to be made in any building of value. Mr. Wyatt Papworth, architect, has published some very interesting notes on spontaneous ignition, giving several well-authenticated instances. Incendiarism may be divided into three sorts—malicious, fraudulent, and monomaniac. Of the former there has been very little in London for many years. The second, however, is rather prevalent. The insurance offices, which are the victims, protect themselves as well as they can, but an inquest on each fire is the true mode of lessening the evil. This is much more the interest of the public than at first seems to be the case. In several instances where the criminals were brought to punishment by Mr. Payne's inquests, people were asleep in the upper parts of the houses set fire to, and in one case there were as many as twelve or fifteen persons. This, however, is seldom stated in the indictment, as, if it is, the punishment is still death by the law, and it is supposed that a conviction is more easily obtained, by the capital charge being waived. Monomania is a rare cause of incendiarism, FIRE-PROOF STRUCTURES.What is "Fire-proof Construction?" is a question which has given rise to a great deal of discussion, simply, as it appears to me, because the size of the buildings, and the quantity and description of the contents, have not always been taken into account. That which may be perfectly fireproof in a dwelling house, may be the weakest in a large warehouse. Suppose an average-sized dwelling-house 20 × 40 × 50 = 40,000 cubic feet, built with brick partitions, stone or slate stairs, wrought-iron joists filled in with concrete, and the whole well plastered. Such a house will be practically fire-proof, because there is no probability that the furniture and flooring in any one room, would make fire enough to communicate to another. But suppose a warehouse equal to twenty such houses, with floors completely open, supported by cast-iron pillars, and each floor communicating with the others by open staircases and wells; suppose, Cast and wrought-iron have been frequently fused at fires in large buildings such as warehouses, sugar houses, &c., but according to Mr. Fairbairn's experiments on cast iron in a heated state, it is not necessary that the fusing point should be attained to cause it to give way. Much confidence has been placed in wrought-iron tie or tension rods, to take the lateral strain of the arches, and also in trusses to support the beams; but it must be evident that the expansion of the iron from the heat, would render them useless, and under a high temperature, it would be so great as to unsettle the brickwork, and accelerate its fall, on any part of the iron-work giving way: again, the application of cold water to the heated iron, in an endeavour to extinguish the fire, is almost certain to cause one or more fractures. The brick-arching is also very liable to fall, especially if only four and a half inches thick, independently of the weight which may be placed upon it, for it is not uncommon after a fire in a large building, to find the mortar almost completely pulverized to the depth of three inches, or four inches, from the face of the wall. When a fire occurred under one of the arches of the Blackwall Railway, on the 15th July, 1843, a portion of the lower ring fell down, and also a few bricks from the next ring. Another very serious objection to buildings of this description, is that, unless scientifically constructed, they are very unlikely to be safe, even for the common purposes intended, independent of the risk of fire. In the Report of Sir Henry De la BÊche and Mr. Thomas Cubitt on the fall of the mill at Oldham, in October, 1844, In a pamphlet published by Mr. S. Holme, of Liverpool, in 1844, The following are the principles on which Mr. Fairbairn proposes to build fire-proof warehouses:— The whole of the building to be composed of non-combustible materials, such as iron, stone, or bricks. In order to prevent fire, whether arising from accident or spontaneous combustion, every opening, or crevice, communicating with the external atmosphere to be closed. An isolated staircase, of stone, or iron, well protected on every side by brick, or stone walls, to be attached to every story, and be furnished with a line of water-pipes, communicating with the mains in the street, and ascending to the top of the building. In a range of stores, the different warehouses to be That the iron columns, beams, and brick arches be of strength sufficient, not only to support a continuous dead pressure, but to resist the force of impact to which they are subject by the falling of heavy goods upon the floors. That in order to prevent accident from the columns being melted by intense heat in the event of fire in any of the rooms, a current of cold air should be introduced into the hollow of the columns, from an arched tunnel under the floors. There is no doubt that if the second principle could be carried out, namely, the total exclusion of air, the fire would go out of itself; but it seems, to say the least of it, very doubtful indeed if this can be accomplished, and if it could, the carelessness of a porter leaving open one of the doors or windows, would make the whole useless. The fifth principle shows that Mr. Fairbairn has omitted to allow for the loss of strength the iron may sustain from the increase of temperature. The last principle would not be likely to answer its purpose, even if it was possible to keep these tunnels and hollow columns clear for a number of years, which is scarcely to be expected. A piece of cast-iron pipe, one-and-a-half inch in diameter, was heated for four minutes in a common forge, both ends being carefully kept open to the atmosphere, when, on one end being fixed in a vice, and the other pulled aside by the hand, it gave way. One of the principal objections to the kind of fire-proof The following is a very clear proof of the inability of cast iron to resist the effects of fire:— "A chapel in Liverpool-road, Islington, seventy feet in length and fifty-two feet in breadth, took fire in the cellar, on the 2nd October, 1848, and was completely burned down. After the fire, it was ascertained that of thirteen cast-iron pillars used to support the galleries, only two remained perfect; the greater part of the others were broken into small pieces, the metal appearing to have lost all power of cohesion, and some parts were melted. It should be observed, that these pillars were of ample strength to support the galleries when filled by the congregation, but when the fire reached them, they crumbled under the weight of the timber only, lightened as it must have been by the progress of the fire." In this case it mattered little whether the pillars stood or fell, but it would be very different with some of the large wholesale warehouses in the City, where numbers of young men sleep in the upper floors; in several of those warehouses the cast-iron pillars are much less in proportion to the weight to be carried than those referred to, and would be completely in the draught of a fire. If a fire should unfortunately take place under such circumstances, the loss of For the reasons here stated, I submit that large buildings, containing considerable quantities of combustible goods, with floors of brick-arches, supported by cast-iron beams and columns, are not, practically speaking, fire-proof; and that the only construction which would render large buildings fire-proof; where considerable quantities of combustible goods are deposited, would be groined brick-arches, supported by pillars of the same material, laid in proper cement. I am fully convinced, from a lengthened experience, that the intensity of a fire,—the risk of its ravages extending to adjoining premises, and also the difficulty of extinguishing it, depend, cÆteris paribus, on the cubic contents of the building which takes fire, and it appears to me that the amount of loss would be very much reduced, if, instead of building immense warehouses, which give the fire a fortified position, warehouses were made of a moderate size, with access on two sides at least, completely separated from each other by party-walls, and protected by iron-doors and window-shutters. In the latter case, the probability is, that not more than one warehouse would be lost at a time, and perhaps that one would be only partially injured. It is sincerely to be hoped that the clause in the last Metropolitan Building Act, restricting the size of warehouses, may be more successful than its predecessor, for it is not only property that is at stake, but human life. In many of these Covering timber with sheet-iron is very often resorted to In wadding manufactories the drying-rooms were frequently lined with iron-plates, and when a fire arose there, the part covered with iron was generally found more damaged than the rest; the heat got through the sheet-iron, and burnt the materials behind it, and there was no means of touching them with water until the iron was torn down; sheet iron should not, therefore, be used for protecting wood. Even cast iron, one inch thick, laid on tiles and cement three inches thick, has allowed fire to pass through both, to the boarding and joisting below, merely from the fire in an open fire-place being taken off and laid on the hearth. This arises from iron being so good a conductor that, when heat is applied to it, it becomes in a very short time nearly as hot on the one side as the other. If the smoke escapes up a chimney, or in any other way, there may be a serious amount of fire before it is noticed. In a fire at the Bank of England, the hearth on which the stove was placed was cast iron an inch thick, with two-and-a-half With regard to the subject of fire-proof dwelling-houses of average size, I consider that such houses when built of brick or stone, with party-walls carried through the roof; the partitions of brick, the stairs of slate or stone, the joists of wrought iron filled in with concrete, and the whole well plastered, are practically fire-proof because, as stated at the opening of this chapter, there is no probability that the furniture and flooring in any one room would make fire enough to communicate to another. The safest manner of heating such houses is with open fire-places, the hearths not being laid upon timber. Stone staircases, when much heated, will fracture from cold water coming suddenly in contact with them; but in a dwelling-house built as described above, there is very little chance of such a circumstance endangering human life, even with wooden steps carried upon brick walls, and rendered incombustible by a ceiling of an inch and a quarter of good hair mortar and well pugged, all the purposes of safety to human life would be attained. There is a particular description of floor, which, although not altogether fire-proof, is certainly (at least so far as I can judge), almost practically so for dwelling-houses. It is composed simply of plank two and a-half or three inches thick, so closely joined, and so nicely fitted to the walls, as to be completely air-tight. Its thickness and its property of being air-tight, will be easily observed to be its only causes of safety. Although the apartment be on fire, yet the time required to burn through the floor above or below, will be so great, that the property may be removed from the other floors, or, more probably, if the means of extinguishing fire Before closing the subject of fire-proof structures, I will add a few words upon fire-proof safes. These are all constructed with double casings of wrought iron, the interstices being in some filled with non-combustible substances, such as pumice stone and Stourbridge clay, and in others with metal tubes, that melt at a low temperature, and allow a liquid contained in them to escape, and form steam round the box, with the intention of preventing the heat from injuring the contents. Such safes I have never found destroyed; and in some cases, after large fires, the whole of the contents have been found uninjured, while the papers in common safes, merely made strong enough to prevent their being broken into, were generally found consumed. FOOTNOTES:That all loop-hole doors similarly situated should be made entirely of wrought iron, frames included, or bricked up. That all shafts for lifts or other purposes, should be of brick, with wrought-iron doors where necessary to receive or deliver goods, and that all openings whatever for machinery should be included in such shaft. That every hatchway or opening in the floors for "shooting" goods from floor to floor should have a strong flap hinged on to the floor, to be closed when not in use, especially at night. That there should be direct access to every room, of every compartment, of every warehouse, from a fire-proof staircase, by iron doors, and that all such staircases should enter from the open air, as well as from under any warehouse on the quay; in the latter case the doors must be of iron only. All the windows in the entresol and ground floors to be bricked up, or have iron shutters, and the doors and frames to be of iron. Wherever the warehouses face each other within 100 feet, the front parapet walls to be carried up to the level of the ridge of the roof. When it is stated in this report that the windows or loop-hole doors should be bricked up, it is not meant to exclude the use of thick glass, three or four pieces being built into each door or window space, not exceeding 6 inches in diameter or square, in the clear, and set in the mortar or cement at least 3/4 of an inch all round, the glass to be not less than 1-1/2 inches thick, flat on both sides, and so placed that no goods can be stored within 18 inches of the inner surface. There should be a tank on the top of each staircase, with a tap from it on each landing, with six fire buckets hung near it, and three small hand pumps in every staircase; the officers and workpeople seeing these every day would be certain to run to them in case of fire, and by having a constant supply of water on every floor small accidents might be extinguished at once, and the iron doors and roofs kept cool in case of one room taking fire. |