I hope that the following practical hints may be found useful by those who wish themselves to successfully perform the experiments already described. Drop with India-rubber Surface.A sheet of thin india-rubber, about the thickness of that used in air-balls, as it appears before they have been blown out, must be stretched over a ring of wood or metal eighteen inches in diameter, and securely wired round the edge. The wire will hold the india-rubber better if the edge is grooved. This does not succeed if tried on a smaller scale. This experiment was shown by Sir W. Thomson at the Royal Institution. Jumping Frame.This is easily made by taking a light glass globe about two inches in diameter, such, for Paraffined Sieve.Obtain a piece of copper wire gauze with about twenty wires to the inch, and cut out from it a round piece about eight inches in diameter. Lay it on a round block, of such a size that it projects about one inch all round. Then gently go round and round with the hands pressing the edge down and keeping it Melt some paraffin wax or one or two paraffin candles of the best quality in a clean flat dish, not over the fire, which would be dangerous, but on a hot plate. When melted and clear like water, dip the sieve in, and when all is hot quickly take it out and knock it once or twice on the table to shake the paraffin out of the holes. Leave upside down until cold, and then be careful not to scratch or rub off the paraffin. This had best be done in a place where a mess is of no consequence. There is no difficulty in filling it or in setting it to float upon water. Narrow Tubes and Capillarity.Get some quill-glass tube from a chemist, that is, tube about the size of a pen. If it is more than, say, a foot long, cut off a piece by Capillarity between Plates.Two plates of flat glass, say three to five inches square, are required. Provided they are quite clean and well wetted there is no difficulty. A little soap and hot water will probably be sufficient to clean them. Tears of Wine.These are best seen at dessert in a glass about half filled with port. A mixture of from two to three parts of water, and one part of spirits of wine containing a very little rosaniline (a red aniline dye), to give it a nice colour, may be used, if port is not available. A piece Cat-Boxes.Every school-boy knows how to make these. They are not the boxes made by cutting slits in paper. They are simply made by folding, and are then blown out like the "frog," which is also made of folded paper. Liquid Beads.Instead of melting gold, water rolled on to a table thickly dusted with lycopodium, or other fine dust, or quicksilver rolled or thrown upon a smooth table, will show the difference in the shape of large and small beads perfectly. A magnifying-glass will make the difference more evident. In using quicksilver, be careful that none of it falls on gold or silver coins, or jewellery, or plate, or on the ornamental gilding on book-covers. It will do serious damage. Plateau's Experiment.To perform this with very great perfection requires much care and trouble. It is easy to succeed up to a certain point. Pour into a clean bottle about a table-spoonful of salad-oil, and pour upon it a mixture of nine parts by volume spirits of wine (not methylated spirits), and seven parts of water. Shake up and leave for a day if necessary, when it will be found that the oil has settled together by itself. Fill a tumbler with the same mixture of spirit and water, and then with a fine glass pipe, dipping about half-way down, slowly introduce a very little water. This will make the liquid below a little heavier. Dip into the oil a pipe and take out a little by closing the upper end with the finger, and carefully drop this into the tumbler. If it goes to the bottom, a little more water is required in the lower half of the tumbler. If by chance it will not sink at all, a little more spirit is wanted in the upper half. At last the oil will just float in the middle of the mixture. More can then be added, taking care to prevent it from touching the sides. If the liquid below is ever so Spinning the oil so as to throw off a ring is not material, but if the reader can contrive to fix a disc about the size of a threepenny-piece upon a straight wire, and spin it round without shaking it, then he will see the ring break off, and either return if the rotation is quickly stopped, or else break up into three or four perfect little balls. The disc should be wetted with oil before being dipped into the mixture of spirit and water. A Good Mixture for Soap-Bubbles.Common yellow soap is far better than most of the fancy soaps, which generally contain a little soap and a lot of rubbish. Castille Bubbles blown with soap and water alone do not last long enough for many of the experiments described, though they may sometimes be made to succeed. Plateau added glycerine, which greatly improves the lasting quality. The glycerine should be pure; common glycerine is not good, but Price's answers perfectly. The water should be pure distilled water, but if this is not available, clean rain-water will do. Do not choose the first that runs from a roof after a spell of dry weather, but wait till it has rained for some time, the water that then runs off is very good, especially if the roof is blue slate or glass. If fresh rain-water is not to be had, the softest water should be employed that can be obtained. Instead of Castille soap, Plateau found that a pure soap prepared from olive-oil is still better. This is called oleate of soda. It should be obtained freshly prepared from a manufacturing chemist. Old, dry stuff that has been kept a long time is not so good. I have always used a modification of Plateau's formula, which Professors Reinold and RÜcker Rings for Bubbles.These may be made of any kind of wire. I have used tinned iron about one-twentieth of an inch in diameter. The joint should be smoothly soldered without lumps. If soldering is a difficulty, then use the thinnest wire that is stiff enough to support the bubbles steadily, and make the joint by twisting the end of the wire round two or three times. Rings two inches in diameter are convenient. I have seen that dipping the rings in melted paraffin is recommended, but I have not found any advantage from this. The nicest material for the light rings is thin aluminium wire, about as thick as a fine pin (No. 26 to 30, Threads in Ring.There is no difficulty in showing these experiments. The ring with the thread may be dipped in the soap solution, or stroked across with the edge of a piece of paper or india-rubber sheet that has been dipped in the liquid, so as to form a film on both sides of the thread. A needle that has also been wetted with the soap may be used to show that the threads are loose. The same needle held for a moment in a candle-flame supplies a convenient means of breaking the film. Blow out Candle with Soap-Bubble.For this, the bubble should be blown on the end of a short wide pipe, spread out at one end to give a better hold for the bubble. Bubbles balanced against one another.These experiments are most conveniently made on a small scale. Pieces of thin brass tube, three-eighths or half an inch in diameter, are suitable. It is best to have pieces of apparatus, specially prepared with taps, for easily and quickly stopping the air from leaving either bubble, and for putting the two bubbles into communication when required. It should not be difficult to contrive to perform the experiments, using india-rubber connecting tubes, pinched with spring clips to take the place of taps. There is one little detail which just makes the difference between success and failure. This is to supply a mouth-piece for blowing the bubble, made of glass tube, which has been drawn out so fine that these little bubbles cannot be blown out suddenly by accident. It is very difficult, otherwise, to adjust the quantity of air in such small bubbles with any accuracy. In balancing Thaumatrope for showing the Formation and Oscillations of Drops.The experiment showing the formation of water-drops can be very perfectly imitated, and the movements actually made visible, without any necessity for using liquids at all, by simply converting Fig. 35 (at end of book) into the old-fashioned instrument called a thaumatrope. What will then be seen is a true representation, because the forms in the figure are copies of a series of photographs taken from the moving drops at the rate of forty-three photographs in two seconds. Obtain a piece of good card-board as large as the figure, and having brushed it all over on one side with thin paste, lay the figure upon it, and press it down evenly. Place it upon a table, and cover it with a few thicknesses of blotting-paper, and lay over all a flat piece of board large enough to cover it. Weights sufficient to keep it all flat may be added. This must be left all night at least, until the card is quite dry, or else it will curl Now having found a pencil or other rod on which the cotton-reel will freely turn, use this as an axle, and holding the disc up in front of a looking-glass, and in a good light, slowly and steadily make it turn round. The image of the disc seen through the slit in the looking-glass will then perfectly represent every feature of the growing and falling drop. As the drop grows it will gradually become too heavy to be supported, a waist will then begin to form which will rapidly get narrower, until the drop at last breaks away. It will be seen to continue its fall until it has disappeared in the liquid below, but it has not mixed with this, In order to perfectly reproduce the experiment, the axle should be firmly held upon a stand, and the speed should not exceed one turn in two seconds. The effect is still more real if a screen is placed between the disc and the mirror, which will only allow one of the drops to be seen. Water-drops in Paraffin and Bisulphide of Carbon.All that was said in describing the Plateau experiment applies here. Perfectly spherical and large drops of water can be formed in a To form a water cylinder in the paraffin the tube must be filled with water as before, but the upper end must now be left open. Then when all is quiet the tube is to be rather rapidly withdrawn in the direction of its own length, when the water which was within it will be left behind in form of a cylinder, surrounded by the paraffin. It will then break up into spheres so slowly, in the case of a large tube, that the operation can be watched. The depth of paraffin should be quite ten times the diameter of the tube. To make bubbles of water in the paraffin, the tube must be dipped down into the water with the upper end open all the time, so that the tube is mostly filled with paraffin. It must then be closed for a moment above and raised till the end is completely out of the water. Then if air is allowed to enter slowly, and the tube is gently raised, bubbles of water filled with paraffin will be formed which can Cylindrical bubbles of water in paraffin may be made by dipping the pipe down into the water and withdrawing it quickly without ever closing the top at all. These break up into spherical bubbles in the same way that the cylinder of liquid broke up into spheres of liquid. Beaded Spider-webs.These are found in the spiral part of the webs of all the geometrical spiders. The beautiful geometrical webs may be found out of doors in abundance in the autumn, or in green-houses at almost any time of the year. To mount these webs so that the beads may Photographs of Water-jets.These are easily taken by the method described by Mr. Chichester Bell. The flash of light is produced by a short spark from a few Leyden-jars. The fountain, or jet, should be five or six feet away from the spark, and the photographic plate should be held as close to the stream of water as is possible without touching. The shadow is then so definite that the photograph, when taken, may be examined with a powerful lens, and will still appear sharp. Any rapid dry plate will do. The room, of course, must be quite dark when the plate is placed in position, and the spark then made. The regular breaking up of the jet may be effected by sound produced in almost any way. The straight jet, of which Fig. 41 is a representation, magnified about three and a quarter times, was regularly broken up by simply whistling to it with a key. The fountains were broken up regularly by fastening the nozzle to one end of a long piece of wood clamped at the end to the stand of a tuning-fork, which was kept sounding by electrical means. An ordinary tuning-fork, made to rest when sounding Fountain and Sealing-wax.It is almost impossible to fail over this very striking yet simple experiment. A fountain of almost any size, at any rate between one-fiftieth and a quarter of an inch in the smooth part, and up to eight feet high, will cease to scatter when the sealing-wax is rubbed with flannel and held a few feet away. A suitable size of fountain is one about four feet high, coming from an orifice anywhere near one-sixteenth of an inch in diameter. The nozzle should be inclined so that the water falls slightly on one side. The sealing-wax may be electrified by being rubbed on the coat-sleeve, or on a piece of fur or flannel which is dry. It will then make little pieces of paper or cork dance, but it will still act on the fountain when Bouncing Water-jets.This beautiful experiment of Lord Rayleigh's requires a little management to make it work in a satisfactory manner. Take a piece of quill-glass tube and draw it out to a very slight extent (see a former note), so as to make a neck about one-eighth of an inch in diameter at the narrowest part. Break the tube just at this place, after first nicking it there with a file. Connect each of these tubes by means of an india-rubber pipe, or otherwise, with a supply of water in a bottle, and pinch the tubes with a screw-clip until two equal jets of water are formed. So hold the nozzles that these meet in their smooth portions at every small angle. They will then for a short time bounce away from one another without mixing. If the air is very dusty, if the water is not clean, or if air-bubbles are carried along in the pipes, the two jets will at once join together. In the Fountain and Intermittent Light.This can be successfully shown to a large number of people at once only by using an electric arc, but there is no occasion to produce this light if not more than one person at a time wishes to see the evolution of the drops. It is then merely necessary to make the fountain play in front of a bright background such as the sky, to break it up with a tuning-fork or other musical sound as described, and then to look at it through a card disc equally divided near the edge into spaces about two or three inches wide, with a hole about one-eighth of an inch in diameter between each pair of spaces. A disc of card five inches in diameter, with six equidistant holes half an inch from the edge, answers well. The disc must be made to spin by any means very regularly at such a speed that the tuning-fork, or stretched string if this be used, when looked at through the holes, appears quiet, or nearly quiet, when made to vibrate. The separate drops will then be seen, and everything described in the preceding pages, and a great deal more, will be evident. This is one of the most fascinating Mr. Chichester Bell's Singing Water-jet.For these experiments a very fine hole about one seventy-fifth of an inch in diameter is most suitable. To obtain this, Mr. Bell holds the end of a quill-glass tube in a blow-pipe flame, and constantly turns it round and round until the end is almost entirely closed up. He then suddenly and forcibly blows into the pipe. Out of several nozzles made in this way, some are sure to do well. Lord Rayleigh makes nozzles generally by cementing to the The rest of the apparatus is very simple. It is merely necessary to stretch and tie over the end of a tube about half an inch in diameter a piece of thin india-rubber sheet, cut from an air-ball that has not been blown out. The tube, which may be of metal or of Bubbles and Ether.Experiments with ether must be performed with great care, because, like the bisulphide of carbon, it is dangerously inflammable. The bottle of ether must never be brought near a light. If a large quantity is spilled, the heavy vapour is apt to run along the floor and ignite at a fire, even on the other side of a room. Any vessel may be filled with the vapour of ether by merely pouring the liquid upon a piece of blotting-paper reaching up to Experiment with Internal Bubbles.For these experiments, next to a good solution, the pipe is of the greatest importance. A "churchwarden" is no use. A glass pipe 5/16 inch in diameter at the mouth is best. If this is merely a tube bent near the end through a right angle, moisture condensed in the tube will in time run down and destroy the bubble occasionally, which is very annoying in a difficult experiment. I have made for myself the pipe of which Fig. 67 is a full size representation, and I do not think that it is possible to improve upon this. Those who are not glass-blowers will be able, with the help of cork, to make a pipe with a trap as shown in Fig. 68, which is as good, except in appearance and handiness. In knocking bubbles together to show that they do not touch, care must be taken to avoid letting either bubble meet any projection in the other, such as the wire ring, or a heavy drop of liquid. Either will instantly destroy the two bubbles. There is also a limit to the violence which may be used, which experience will soon indicate. In pushing a bubble through a ring smaller than itself, by means of a flat film on another ring, it is important that the bubble should not be too large; but a larger bubble can be pushed through than would be expected. It is not so easy to push it up as down because of the heavy drop of liquid, which it is difficult to completely drain away. To blow one bubble inside another, the first, as large as an average orange, should be blown on the lower side of a horizontal ring. A light wire ring should then be hung on to this bubble to slightly pull it out of shape. For this purpose thin aluminium rings are hardly heavy enough, and so either a heavier metal should Bubbles coloured with fluorescine, or uranine, do not show their brilliant fluorescence unless sunlight or electric light is concentrated upon them with a lens or mirror. The quantity of dye required is so small that it may be difficult To blow bubbles containing either coal-gas or air, or a mixture of the two, the most convenient plan is to have a small T-shaped glass tube which can be joined by one arm of the T to the blow-pipe by means of a short piece of india-rubber tube, and be connected by its vertical limb with a sufficient length of india-rubber pipe, one-eighth of an inch in diameter inside, to reach to the floor, after which it may be connected by any kind of pipe with the gas supply. The gas can be stopped either by pinching the india-rubber tube with the left hand, if that is at liberty, or by treading on it if both hands are occupied. Meanwhile air can be blown in by the other arm of the T, and the end closed by the tongue when gas alone is required. This If a light T-piece or so great a length of small india-rubber tube cannot be obtained, then the mouth must be removed from the pipe and the india-rubber tube slipped in when air is to be changed for gas. This makes the manipulation more difficult, but all the experiments, except the one with three bubbles, can be so carried out. The pipe must in every case be made to enter the highest point of a bubble in order to start an internal one. If it is pushed horizontally through the side, the inner bubble is sure to break. If the inner bubble is being blown with gas, it will soon tend to rise. The pipe must then be turned over in such a manner that the inner bubble does not creep along it, and so meet the outer one where penetrated by the pipe. A few trials will show what is meant. The inner bubble may then be allowed to rest against the top of the outer one while being enlarged. When it is desired If the same experiment is performed upon a light ring with cotton and paper attached, the left hand will be occupied in holding this ring, and then the gas must be controlled by the foot, or by a friend. The light ring should be quite two inches in diameter. If, when the inner bubble has begun to carry away the ring, &c., the paper is caught hold of, it is possible, by a judicious pull, to cause the two bubbles to leave the ring and so escape into the air one inside the other. For this purpose the smallest ring that will carry the paper should be used. With larger rings the same effect may be produced by inclining the ring, and so allowing the outer bubble to peel off, or by placing the mouth of the pipe To blow three bubbles, one inside the other two, is more difficult. The following plan I have found to be fairly certain. First blow above the ring a bubble the size of a large orange. Then take a small ring about an inch in diameter, with a straight wire coming down from one side to act as a handle, and after wetting it with the solution, pass it carefully up through the fixed ring so that the small ring is held well inside the bubble. Now pass the pipe, freshly dipped in the solution, into the outer or No. 1 bubble until it is quite close to the small ring, and begin to blow the No. 2 bubble. This must be started with the pipe almost in contact with the inner ring, as the film on this ring would destroy a bubble that had attained any size. Withdraw the pipe, dip it into the liquid, and insert it into the inner bubble, taking care to keep these two bubbles from meeting anywhere. Now blow a large gas-bubble, which may rest against the top of No. 2 while it is growing. No. 2 may now rest against the Bubbles and Electricity.These experiments are on the whole the most difficult to perform successfully. The following details should be sufficient to prevent failure. Two rings are formed at the end of a pair of wires about six inches long in the straight part. About one inch at the opposite end from the ring is turned down at a right angle. These turned-down ends rest in two holes drilled vertically in a non-conductor such as ebonite, about two or three inches apart. Then if all is right the two rings are horizontal and at the same level, and they may be moved towards or away from one another. Separate them a few inches, and blow a bubble above or below each, making them nearly the same size. Then bring the two rings nearer together until the bubbles just, and only just, rest against one another. Though they may be hammered together without joining, they will not remain long resting in this position, as the convex surfaces can readily squeeze out the air. The A stick of sealing-wax should be held in readiness under the arm, in a fold or two of dry flannel or fur. If the wax is very strongly electrified, it is apt to be far too powerful, and to cause the bubbles, when it is presented to them, to destroy each other. A feeble electrification is sufficient; then the instant it is exposed the bubbles coalesce. The wax may be brought so near one bubble in which another one is resting, that it pulls them to one side, but the inner one is screened from electrical action by the outer one. It is important not to bring the wax very near, as in that case the bubble will be pulled so far as to touch it, and so be broken. The wetting It would be going outside my subject to say anything about the management of lanterns. I may, however, state that while the experiments with the small bubbles are best projected with a lens upon the screen, the larger bubbles described in the last lecture can only be projected by their shadows. For this purpose the condensing lens is removed, and In these hints, which have in themselves required a rather formidable chapter, I have given all the details, so far as I am able, which a considerable experience has shown to be necessary for the successful performance or the experiments in public. The hints will I hope materially assist those who are not in the habit of carrying out experiments, but who may wish to perform them for their own satisfaction. Though people who are not experimentalists may consider that the hints are overburdened with detail, it is probable that in repeating the experiments they will find here and there, in spite of all my care to provide against unforeseen difficulties, that more detail would have been desirable. Though it is unusual to conclude such a book as this with the fullest directions for THE END.Richard Clay & Sons, Limited, London & Bungay. Fig. 35 THAUMATROPE for showing the formation and oscillation of drops. Fig. 35 THAUMATROPE for showing the formation and oscillation of drops. |