CHAPTER III COLORATION

Previous

In dealing with the coloration, we have first to distinguish between the colour and the markings. The former is very often highly variable among snakes of the same species, to say nothing of the changes which may take place with age or with the condition of the individuals, whether before or after exuviation; it is not unusual to find among specimens from the same locality a great range of variation, from greyish-white to brown, or red, or black, as, for instance, in our Common Viper. The latter afford more important characters, and often furnish valuable indications for the distinction of species; but even the disposition of the markings is subject to great individual variations, more likely to mislead than to help the inexperienced student in the discrimination of species. It is therefore always advisable to resort in the first instance to structural characters for the purpose of specific identification, and to fall back on coloration only as a means of confirmation. If we were to be guided by colour and markings alone, how could we believe that an adult four-lined Coluber quatuorlineatus is of the same species as the handsomely spotted Coluber sauromates; and yet, if we compare the young of these two snakes we find them to be absolutely identical in their markings, and, in the absence of any structural differences, we are forced to conclude that they only represent two forms of the same species, of which the latter is the more primitive.

It is nevertheless a fact that, with a few exceptions, the markings, however variable they may be, are reducible to certain fundamental patterns to which the innumerable variations may be traced back, and their derivation followed and scientifically explained. Let us consider, for instance, another species of Coluber, highly variable in its markings: C. leopardinus, of which the typical form, so called from having been the first described and named, is not by any means to be regarded as the most primitive.

First, we must take for granted that the markings of all such snakes, whether consisting of spots, stripes, or bars, start from a regular arrangement, which may be theoretically represented by four paired longitudinal series on the head and body: (1) Dorsal series (D); (2) Dorso-lateral (DL); (3) Lateral (L); (4) Ventro-lateral (VL). The first starts from the middle line of the head, and is continued along the spine; the second occupies the space between the first and third, which originates at the tip of the snout, passes through the eye, and is continued on the temple and along the side of the body; the fourth follows the lower lip, and extends along each side of the belly. Bearing this in mind, we find that the variety of C. leopardinus named schwoederi, with a vertebral series of paired spots, is to be regarded as the most primitive, from which we can derive, on the one hand, the true leopardinus by imagining a transverse fusion of the spots of series D into a single row, some of the spots often actually revealing, in their biscuit shape, their dual origin; whilst, on the other hand, confluence of the paired spots of the same series into two longitudinal stripes produces the variety named quadrilineatus (see Plate VII.). In this particular instance, the paired series D has fused into a single streak on the head, and the series L appears to have departed from its primitive course to extend on the upper surface of the head, both in front of and behind the eye.

Many snakes show an interocular band extending from lip to lip, through the eyes, across the interorbital region. In others the lateral stripe L may bifurcate in front of the eye, an upper branch extending across the snout, through transverse fusion of series D and DL, and it may also bifurcate in like manner on the temporal region, fusing with the corresponding marking on the other side to form a W-shaped figure. The pattern of markings on the upper surface of the head is, however, often very complicated, and hence difficult of explanation.

As a second example of the derivation of patterns, we may mention Vipera aspis, which varies enormously as to its mid-dorsal markings, forming, in different individuals or even on different parts of the body, single or paired spots, a zigzag band, or transverse bars; all these are derived from the paired spots of series D. Each pair of spots may fuse and form transversely oval or elliptical spots or bars, or the spots may assume an alternate disposition from which, through confluence, the zigzag or sinuous band results. Thus, spotted and striped patterns may be traced to a common origin, however fundamental the difference between them appears at first sight. If the elements of the four series, D, DL, L, and VL, unite transversely with each other, and also with the spots on the ventral surface, we obtain ringed forms such as the Coral-snakes. That the black nuchal collar of our common Grass-snake is actually formed by the fusion of the spots of three originally distinct series has been proved by tracing the development of the markings in the embryo.

In various species a pair of light streaks extends along the back, bordering the D area, without interfering with the other markings, as we see, among European snakes, in some specimens of Tropidonotus natrix and viperinus, and Vipera berus.

Although it sometimes happens that a definite system of markings prevails throughout a genus, such as the annulate form in the South American Elaps, this is far from being universally the case; many closely allied species, or individuals of the same species, may be distinguished by very different patterns. Even on the same individual we may find two opposite types of markings without any transition, as in two Central American species of widely different genera, Polyodontophis annulatus and Zamenis mexicanus, in which the anterior part of the body is annulate or barred, and the rest longitudinally striped.

It is also a remarkable fact that very often the two sides of the body are not alike in their markings, appearing as if formed of the union, on the median line, of the right and left halves of two individuals. Thus it may happen, in annulate forms, that some of the annuli are broken exactly in the mid-dorsal and mid-ventral lines, and that the halves do not correspond in number on the two sides. In the handsome South American Lachesis alternatus, which derives its specific name from the two series of large C-shaped, dark, light-edged markings which adorn its back, these markings are not always alternating, as is the rule; but some may lie opposite to each other and back to back, this being due to the fact that the numbers of the markings do not correspond on the two sides. In one specimen I count twenty-four of these markings on the left side, and twenty-seven on the right. This shows that great importance cannot be attached to the number of the markings, for systematic purposes. In fact, in some Coral-snakes, Elaps fulvius for instance, the number of annuli may vary from twelve to fifty-two, with every gradation between the extremes. The bilateral asymmetry to which we have alluded produces the chess-board arrangement of the ventral spots in many snakes.

Among the markings which call for investigation as to their meaning, we must allude to the presence, in some Colubrids, of a small, light, dark-edged spot, or of a pair of light dots close together, in the middle of the parietal shields or on each side of the suture between these shields, which correspond in their position to the parietal organ of many Lizards. May not this marking be in some way correlated with sensory organs, like the apical pits on the scales of the body? And what is the explanation of such bizarre signs as the spectacle or the eye-spot on the hood of the Indian Cobra? At present it is as inexplicable as the lugubrious emblem on the thorax of the Death’s-head Moth. It cannot be suggested that it is a warning mark intended to terrify intruders, for when the Cobra is at rest the hood is folded, and the characteristic marking is not displayed; whilst as soon as it is aroused, and the hood expanded, it faces its enemy in such a way that the spectacle, or ocellus, is not to be seen.

First among the most brilliantly coloured snakes, of which there are many, stand the Coral-snakes, Elaps, of America, mostly annulate with red, yellow or white, and black. This striking coloration obtains also in diverse harmless snakes inhabiting the same part of the world, and this coincidence has been adduced in favour of the theory of mimicry, correlated with that of natural selection, which accounts for the resemblance as being of advantage to a harmless species, which is thus mistaken for one notorious for its deadly poison, and advertised as such by its brilliant colours (warning coloration). But other poisonous and much more dangerous snakes are not, as a rule, endowed with brilliant colours. It is true that these also may have their mimics: the Krait, Bungarus cÆruleus, and Lycodon aulicus, in India, the Pit-viper, Ancistrodon himalayanus, and Psammodynastes pulverulentus, in the Himalayas and Assam, are good examples of such cases. On the other hand, there are equally striking instances of what one would regard as mimics if they only occurred together; thus, there is no better case of general resemblance between a poisonous and a harmless snake than we find in the Indian Cobra and the Coluber corais of tropical America, where Cobras are absent, or between a Viper and the Boid Enygrus asper, from New Guinea, where no Vipers exist.

Without attempting to offer any suggestion to account for the similarity of markings which prevails in certain parts of the world, attention may be drawn to the predominance of longitudinal dark and light stripes in the Indo-Malayan representatives of the American Elaps, shared by many innocuous snakes of similar form inhabiting the same region, and to the striped tails common to various Colubrids of Madagascar, as if the snakes of a district had agreed to conform to certain fashions in dress.

It is further noteworthy, in relation to the theory of warning coloration, that many Uropeltids, innocent burrowing creatures living underground or concealed under stones or rotting tree-trunks in the forests of Southern India and Ceylon, hardly ever showing themselves in daylight, are among the most striking for their bright yellow or red and black markings. We may point out at the same time the very marked resemblance in form and coloration between the Uropeltid Melanophidium bilineatum, and the Apodal Batrachian Ichthyophis glutinosus, both occurring together in Southern India.

The colour of snakes often harmonizes with their surroundings. Thus, many Tree-snakes, Boid, Colubrid, or Viperid, are of a bright green, like the foliage in which they are concealed. On the other hand, other Tree-snakes are not green, or only some specimens are green, as in the genera Dendraspis and Dispholidus. Desert-snakes are of the yellowish or reddish colour of the sand or rock on which they live, and in species whose range extends over different districts the desert individuals are paler, without or with less distinct markings, as compared to their fellows among other surroundings. In addition to their markings, some snakes are adorned with a metallic iridescent gloss, due to a fine striation of the scales.

The iris is often metallic, gold, bronze, or copper-red, and the black streaks of the head sometimes extend over it.

Although, unlike many lizards, snakes are unable to rapidly alter their colours, some produce a semblance of this phenomenon when inflating their neck or body; this is due to the presence of dark and light markings or of a bright pigment in the interstitial skin, which is not seen when the scales overlap. Thus, in the Indian Tree-snake Dryophis mycterizans the skin between the green or brown scales in the anterior part of the body is black and white, producing a striped pattern when the neck is inflated; the skin of the same region is bright vermilion in the Malay Tropidonotus subminiatus; many more examples could be quoted. The spectacle marking on the hood of the Indian Cobra involves the scales as well as the interstitial skin.

As a rule there are no sexual differences in colour. Yet these are so marked in our Common Adder that the sex of a specimen can nearly always be recognized by the coloration. This is, however, the exception, even in the genus to which the Adder belongs. A nuptial dress is unknown in snakes.

A special livery for the young is rather exceptional, but very often the new-born is more vividly coloured than its parents, and in many black varieties the young is similar to the typical form. Some green Tree-Boids (Chondropython and Corallus caninus) are not green, but yellowish, cream-colour, or pinkish, when young, the green appearing around the white spots, which are the remains of the ground colour, and gradually spreading over the whole body. Conversely, the young of a variety of the Pit-viper Lachesis wagleri, common in the Malay Peninsula, is green, and the adult black and yellow. In the young of Grayia ornata, a West African Water-snake, the markings of the young are to those of the adult like positive and negative in photography, the white bars, forked on the sides, which extend across the black back of the former being gradually transformed into black bars on a light ground in the latter; in such a case it is impossible to decide whether the dark or the light parts are to be considered as the ground colour.

That the skin of many snakes contains soluble colouring matter of a special kind is well known, green snakes, such as Dryophis prasinus and Lachesis gramineus staining the spirit in which they are preserved. Chemists have not yet paid attention to this question, which requires investigation.

Melanism is frequent in snakes, and sometimes affects all individuals in the same locality. It seems undesirable to bestow varietal names on such aberrations, as is so frequently done by systematists, any more than we should in the case of albinos. Melanism may be produced in two ways: by an extension of the black markings, which invade the whole surface, as in the males of Vipera berus; or by a general darkening of the ground colour and of the markings, as in the females of the same species. In the latter case, the markings reappear under certain lights or after a prolonged sojourn in spirits. Sometimes, as in Zamenis gemonensis, the uniform black colour appears only as the snake approaches the adult condition, the young having the normal livery.

Partial albinism is rare; perfect albinism, characterized by absence of black pigment in the eye, rarer still. Cases have been observed, among European species, in Tropidonotus natrix and tessellatus, in Coluber longissimus, and in Coronella austriaca.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page