AIR SPRINGS AND CUSHIONS UNLIKE water, air is a highly compressible, elastic fluid, and as such furnishes an excellent medium for the storage of energy. It acts just like a clock spring into which energy may be introduced and stored by winding or compressing the spring. The energy remains locked up in the spring and when the spring is released, it gives back just as much energy as was put into it, except for slight frictional and heat losses. Air is a much better spring than steel or any other metal because it never loses its elasticity from fatigue and because it has an enormous capacity for the storage of energy. It possesses one serious drawback, however. Much of the energy that is expended in compressing it is converted into heat. If the air were to be used immediately and without transmitting it to a distance, there would be no advantage in extracting the heat, but heat cannot be stored in air for long and it would gradually escape from the storage reservoir or air receiver and from the pipes leading the air to the machines that it was to operate. As the heat escaped it would lower the pressure of the air and hence much of the energy would be lost. HEAT OF COMPRESSIONIn Chapter V we described a hydraulic system of compressing air and noted that one of the advantages In most cases air is compressed by steam or electrically driven compressors, and in such machines the heat due to compression is a serious matter. The air cylinders are water-jacketed to carry off the heat. But air is a poor conductor; it acquires heat faster than it can give it off to the water surrounding the cylinders. In compound air compressors the air compressed in one cylinder is cooled before being passed on to the next cylinder, where it is further compressed. The heat loss in compressing air in a single stage up to 100 pounds gauge pressure is about 30 per cent. Air that enters a compressor at the normal pressure of the atmosphere and with an initial temperature of 60 degrees F., if not cooled will become heated to 415 pounds gauge pressure. The higher the initial heat of the air, the greater the rise of temperature. If a volume of air be subjected to 294 pounds gauge pressure, it will occupy about one-tenth of its former volume. If the air was introduced into the compressor at zero, it would acquire a temperature of about 650 degrees; if introduced at 60 degrees, it would show an increase of about 800 degrees; and, if started at 100 degrees, it would show an increase of 900 degrees in passing through the compressor. This shows the advantage Sometimes the heat developed is sufficient to produce a disastrous explosion. Air is noncombustible, but the oils used to lubricate the compressor are vaporized by the heat and when mixed with air form a powerful explosive. Care has to be taken that none but high-grade oil with a high flash point be used in the compressor and that the temperature of compression does not rise to near the flash point lest the vaporized oil be ignited. That fire can be produced by sudden compression of air has long been known in the Philippine Islands. The natives use a small air tube with a close-fitting plunger. Combustible matter is placed in the bottom of the tube, and on striking the plunger a sharp blow this is ignited. When compressed air is used in an air motor it expands and in so doing absorbs heat. The more rapidly it expands, the more heat it absorbs. This heat it extracts from the motor and from the atmosphere into which it escapes, and it is a common occurrence to find a thick coating of frost around the exhaust port. This is due to condensation of moisture in the atmosphere or in the compressed air itself, which, because of the rapid extraction of heat, is converted into snow. On cold days enough frost may be produced in the exhaust pipe to clog it and interrupt the operation of the motor, and frost sometimes clogs the air lines leading to the motor. WHARF ON THE PACIFIC COAST PROTECTED BY A PNEUMATIC BREAKWATER Air issuing from the submerged perforated pipes breaks up the waves GENERAL VIEW OF A SUN POWER PLANT IN EGYPT CLOSE-UP OF ONE OF THE REFLECTORS SHOWING THE BOILER The fact that compressed air on expanding is cooled, makes it an ideal power for use in mining machinery. Steam is inconvenient because of the difficulty of transmitting it to the machines without loss of heat, because it would heat the machines so that they cannot be handled readily and because the exhaust steam would fill the mine with an impenetrable fog; electricity is dangerous in mines that are apt to contain explosive gases, because the wires are liable to be broken and cause sparks by short circuiting, and because sparks are likely to form between the brushes and commutators of the motors; but compressed air has none of these objections, and, furthermore, the discharge from the machines furnishes the operators with ample supplies of fresh cool air which drives out disagreeable and dangerous gases. AIR-DRIVEN HAMMERSThe ordinary rock drill is really a pneumatic hammer. The tool, which is chisel-shaped, is used as a hammer to pound a hole in the rock. The tool is driven up and down or in and out by compressed air bearing alternately on opposite sides of a piston. The elasticity of the compressed air acts as a cushion to relieve the machine from shock. The drill is mounted upon a tripod in such a way that it may be operated in any direction. The pneumatic riveter is another form of compressed-air hammer. The machine is held in the hands, and the tool, which is rapidly reciprocated by air pressure, pounds the red-hot shank of a rivet. While this is being done an assistant holds a hammer against the head of the rivet. However, there is a type of riveter which has a U-shaped frame. One arm of the frame carries the reciprocating tool while the other reaches around and bears against the head of the rivet. All sorts of tools have been built in which a small air-driven motor furnishes the motive power. There are hand drills in which the tool is revolved by a set STOPPING TRAINS WITH AIRAir has played a most important part in transportation. When the air brake was first introduced its purpose was to prevent collisions and provide greater safety of operation. It was not generally realized that efficient air brakes are not only a safety precaution, but a means of increasing schedule speeds. The more quickly a train can stop, the better speed it may make, particularly on a schedule that calls for frequent stops. In the first air brake invented by George Westinghouse, the locomotive was provided with a reservoir in which air was stored and compressed by means of a steam-operated air pump. The cars were each provided with a cylinder and piston connected to the air reservoir through a valve conveniently located in the engineer’s cab. The piston of the air cylinder was connected with the air brakes so that whenever the engineer wished to stop his train he merely turned on the compressed air and all the brakes in the train were operated. This was a great saving over the previous system of providing brakemen to operate hand brakes. Unfortunately, the problem of stopping a train was not as simple as all this. On a long train the cylinders near the engine were the first to receive pressure sufficient to operate the brakes, and as a result, the forward part of the train was retarded Each car is provided with its own cylinder which furnishes the necessary air for the operation of its brakes. There is, of course, a main cylinder on the locomotive in which air is pumped at high pressure by a steam-operated pump. When the pressure of the main reservoir falls below a predetermined amount, the air pump starts operating automatically and continues until the requisite pressure is restored. Air from the reservoir is fed to the train pipe at a certain pressure and feeds the local reservoirs on the cars of the train. At each car it passes through a very ingenious triple valve, which consists of a cylinder with a double piston, one operated by pressure in the train pipe, and the other by pressure in the local cylinder. The piston operated by the pressure of the train pipe is larger than the other and consequently the valve piston is normally pressed back, uncovering a small port through which air from the train pipe feeds into the local reservoir. In There have been a number of improvements in air brakes aimed to make the operation of the brakes more uniform and to insure immediate action, even on a very long train. Modern express trains weighing 920 tons and traveling at a velocity of 60 miles per hour, can be brought to a standstill in 860 feet, or practically their own length. Automatic arrangements are provided to insure the application of the brakes at graduated rate, except, of course, when the emergency brakes are applied. As the speed of the train slows down the pressure is gradually relieved, otherwise the train would stop with a severe jolt. The rate of applying the brakes so as to provide a smooth retardation depends in large measure upon the weight of the train. On the New York subways, it is interesting to note, every passenger who boards a train has his weight recorded by the brake mechanism, and allowance is automatically made for the inertia that his mass adds to the train when it is in motion. The weight operates through a system of levers to control the amount of pressure that is applied to the PROPELLING CARS WITH AIRIf air can be used to stop a train, why cannot air be used to propel it? This question occurred to many inventors and they answered it by building air-propelled cars and locomotives. Pneumatic cars were tried out on street railways, but they have had to give way to electric cars which do not need to carry their power around with them, but can draw it from a central power plant through a trolley wire. In only a few situations, such as in mines where electric sparking is feared, are air-propelled cars and locomotives still used to any considerable extent. However, air plays another and highly important part in transportation and here it is employed not to deliver energy stored in it, but to serve as a cushion. Without the soft, flexible grip of the air-filled rubber tubes with which automobile wheels are shod, high-speed motoring would be practically impossible. There is nothing that can compare with air for absorbing shocks and unevennesses in the road. Whenever an obstruction is encountered, not only is the shock absorbed by elasticity of the air, but the impact is immediately distributed uniformly over the whole tire, so that the strain on the tire is not localized and the life of the tire is correspondingly increased. There have been many attempts to introduce substitutes for pneumatic tires, such as combinations of metallic springs and straps, but these have failed, chiefly for the reason that they cannot distribute the shock as the pneumatic tire Air as a cushion is used to prevent the rebound of the springs of an automobile and is also widely employed in machinery to absorb the momentum of moving parts or to slow the action of a spring. In a door check, for instance, a powerful spring is provided which would slam the door shut were it not for the cushioning action of air. A plunger is connected to the door and slides in a cylinder on the door frame. The air compressed by the plunger can escape only very slowly through a small port. AIR CUSHIONS FOR ELEVATORSAir cushions are used in elevators to prevent too rapid a fall of the car in case of accident. The lower part of the elevator shaft is completely inclosed and fitted with steel doors to form an air pocket. The car fits the shaft closely enough to compress the air under it when it is moving downward. At normal speeds, this air escapes quite readily around the sides of the car and through cracks in the doors, but when the speed is excessive the air cannot escape fast enough and sufficient pressure is built up to retard the car so that it will strike the bottom with a moderate impact not at all dangerous to the passengers. In the Woolworth Building, New York, the highest elevator shafts are 680 feet high and the air pockets are 137 feet deep—i. e., they reach up to the tenth story. If the car broke away from its supports at the top of the shaft it would be traveling at the rate of 132 miles an hour when it struck the air pocket, Air jets are used for a variety of purposes ranging from tamping railway tracks to painting buildings. When a track is depressed under the tamping action of trains passing over it the ties must be raised and new ballast introduced under them so as to bring them up to level. In order to save hand labor and insure the perfect filling of all cavities a pneumatic tamper is sometimes used. The ballast, consisting of sand or gravel up to ¾ inch in diameter, is fed out of a hopper and meets a blast of air that hurls it into place like shot from an air rifle. This furnishes a very solid and compact road bed. It is in much the same way that weather-stained stone walls are cleansed by means of a sand blast. The sand particles projected by the jet of air act LAYING CEMENT WITH AN AIRGUNIt is after this same fashion that the cement gun is used to project cement against wire reenforcement to form walls of buildings. Carl E. Akeley was led to the invention of the cement gun by his efforts to find an expeditious and economical method of mounting specimens of large animals for the Field Museum in Chicago. He constructed a pneumatic device for spraying cement and water upon a canvas-covered framework, thus building up a body upon which the skin of the animal could be mounted. This machine was improved and tried out successfully, on a large scale, in constructing buildings. The machine as now constructed consists of a hopper into which a proper mix of sand and cement is introduced. Compressed air blows this mixture out of a nozzle. Here it meets a jet of water also propelled by compressed air. The water, sand, and cement combine and strike the wall or surface to be coated with such an impact as to make a compact fine-grained coating known to the trade as “gunite.” Large surfaces can be painted much more readily and more evenly with compressed air than with a brush. A widely spreading air jet is used which draws the paint out of a receptacle, breaking it up into minute droplets that are projected as a mist against the surface, covering it with a uniform coating. AIR AS A TENSION SPRINGSo far we have been considering air as a compression spring. It may also be employed in a manner somewhat analogous to a tension spring. When We are apt to overlook the fact that a vacuum cleaner depends upon atmospheric pressure to drag the dust and dirt out of a carpet. A vacuum cleaner would not work on the moon, where there is no atmospheric pressure. The apparatus consists of an air pump, usually driven by an electric motor, which exhausts, or partially exhausts, the air from a foot piece that is dragged along the carpet. As the air under atmospheric pressure rushes in through the carpet to take the place of the air that has been pumped out, it carries with it all loose particles of dirt. The dirt is filtered out of the air or a mechanical trap is provided to catch and retain the dirt while the air is allowed to escape. Large-scale vacuum cleaners are used for cleaning city streets. The dirt is loosened by revolving brushes and is then drawn up by atmospheric pressure into a tank. Another use of atmospheric pressure is to be found in the pneumatic tubes which convey mail from one post office to another. Air is exhausted from the tube and when a carrier is inserted which fits the tube closely the atmospheric pressure behind it forces the carrier along to its destination. The same system is used to carry money to and from the cashier’s office in department stores. In later developments of the pneumatic mail carrier compressed air was used back of the carrier, but the principle of operation was not altered. In In 1869 Alfred E. Beach built an experimental subway line under Broadway, New York, near Warren Street. The line was only 200 feet long. A cylindrical car large enough to hold eighteen people, fitted the bore snugly and was propelled in one direction by compressing the air in the tunnel and in the other direction by exhausting the air. |