CHAPTER VIII THE LAKE SUBMARINES

Previous

John P. Holland was not the only inventor who responded to the invitation of the United States navy department to submit designs for a proposed submarine boat in 1893. That invitation had been issued and an appropriation of $200,000 made by Congress on the recommendation of Commander Folger, chief of ordnance, after he had seen a trial trip on Lake Michigan of an underwater boat invented by Mr. George C. Baker. This was an egg-shaped craft, propelled by a steam engine on the surface and storage-batteries when submerged, and controlled by two adjustable propellers, mounted on either side of the boat on a shaft running athwartship. These screws could be turned in any direction, so as to push or pull the vessel forward, downward, or at any desired angle. Mr. Baker submitted designs for a larger boat of the same kind, but they were not accepted.

The third inventor who entered the 1893 competition was Mr. Simon Lake, then a resident of Baltimore. He sent in the plans of the most astonishing-looking craft that had startled the eyes of the navy department since Ericsson’s original monitor. It had two cigar-shaped hulls, one inside the other, the space between being used for ballast-tanks. It had no less than five propellors: twin screws aft for propulsion, a single screw working in an open transverse tunnel forward,12 to “swing the vessel at rest to facilitate pointing her torpedos,” and two downhaul or vertical-acting propellers “for holding vessel to depth when not under way.” These were not placed on deck, as on the Nordenfeldt II, but in slots in the keel. Other features of the bottom were two anchor weights, a detachable “emergency keel,” and a diving compartment. On deck were a folding periscope and a “gun arranged in water-tight, revolving turret for defense purposes or attack on unarmored surface craft.” There were four torpedo tubes, two forward and two aft, according to the modern German practice. The motive-power was the then usual combination of steam and storage batteries. But the two remaining features of the 1893 model Lake submarine were extremely unusual.

Courtesy International Marine Engineering.
Lake 1893 Design as Submitted to the U. S. Navy Department.

Instead of one pair of horizontal rudders, there were four pairs, two large and two small. The latter, placed near the bow and stern, were “levelling vanes, designed automatically to hold the vessel on a level keel when under way”; while the larger ones were called “hydroplanes” and so located and designed as to steer the submarine under, not by making it dive bow-foremost but by causing it to submerge on an even keel. How this was to be accomplished will be explained presently. The other new thing about the Lake boat was that it was mounted on wheels for running along the sea-bottom. There were three of these wheels: a large pair forward on a strong axle for bearing the vessel’s weight, and a small steering-wheel on the bottom of the rudder.

Courtesy of Mr. Simon Lake.
The Argonaut Junior.

This submarine was never built, however, for the congressional appropriation was awarded to the Holland Torpedo-boat Company and Mr. Lake had at that time no means for building so elaborate a vessel by himself. What he did build was the simplest and crudest little submarine imaginable: the Argonaut Jr. She was a triangular box of yellow pine, fourteen feet long and five feet deep, mounted on three solid wooden wheels. She was trundled along the bottom of Sandy Hook Bay by one or two men cranking the axle of the two driving wheels. The boat was provided with an air-lock and diver’s compartment “so arranged that by putting an air pressure on the diver’s compartment equal to the water pressure outside, a bottom door could be opened and no water would come into the vessel. Then by putting on a pair of rubber boots the operator could walk around on the sea bottom and push the boat along with him and pick up objects, such as clams, oysters, etc., from the sea bottom.”13

Enough people were convinced by the performances of this simple craft of the soundness of Mr. Lake’s theories that the inventor was able to raise sufficient capital to build a larger submarine. This boat, which was designed in 1895 and built at Baltimore in 1897, was called the Argonaut. When launched, she had a cigar-shaped hull thirty-six feet long by nine in diameter, mounted on a pair of large toothed driving-wheels forward and a guiding-wheel on the rudder. The driving-wheels could be disconnected and left to revolve freely while the boat was driven by its single-screw propeller. There was a diver’s compartment in the bottom and a “lookout compartment in the extreme bow, with a powerful searchlight to light up a pathway in front of her as she moved along over the waterbed. The searchlight I later found of little value except for night work in clear water. In clear water the sunlight would permit of as good vision without the use of the light as with it, while if the water was not clear, no amount of light would permit of vision through it for any considerable distance.”

Storage batteries were carried only for working the searchlight and illuminating the interior of the boat. The Argonaut was propelled, both above and below the surface, by a thirty horse-power gasoline engine, the first one to be installed in a submarine. There was enough air to run it on, even when submerged, because the Argonaut was ventilated through a hose running to a float on the surface: a device later changed to two pipe masts long enough to let her run along the bottom at a depth of fifty feet.

Courtesy of International Marine Engineering.
Argonaut as Originally Built.

The Argonaut had no hydroplanes or horizontal rudders of any kind. She was submerged, like the Intelligent Whale, by “two anchor weights, each weighing 1000 pounds, attached to cables, and capable of being hauled up or lowered by a drum and mechanism within the boat.... When it is desired to submerge the vessel the anchor weights are first lowered to the bottom; water is then allowed to enter the water-ballast compartments until her buoyancy is less than the weight of the two anchors, say 1500 pounds; the cables connecting with the weights are then hauled in, and the vessel is thus hauled to the bottom, until she comes to rest on her three wheels. The weights are then hauled into their pockets in the keel, and it is evident that she is resting on the wheels with a weight equal to the difference between her buoyancy with the weights at the bottom, and the weights in their pockets, or 500 pounds. Now this weight may be increased or diminished, either by admitting more water into the ballast tanks or by pumping some out. Thus it will be seen that we have perfect control of the vessel in submerging her, as we may haul her down as fast or as slow as we please, and by having her rest on the bottom with sufficient weight to prevent the currents from moving her out of her course we may start up our propeller or driving-wheels and drive her at will over the bottom, the same as a tricycle is propelled on the surface of the earth in the upper air. In muddy bottoms, we rest with a weight not much over 100 pounds; while on hard bottoms, or where there are strong currents, we sometimes rest on the bottom with a weight of from 1000 to 1500 pounds....

“In the rivers we invariably found a muddy bed; in Chesapeake Bay we found bottoms of various kinds, in some places so soft that our divers would sink up to their knees, while in other places the ground would be hard, and at one place we ran across a bottom which was composed of a loose gravel, resembling shelled corn. Out in the ocean, however, was found the ideal submarine course, consisting of a fine gray sand, almost as hard as a macadamized road, and very level and uniform.”

During this cruise under the waters of Chesapeake Bay, the Argonaut came on the wrecks of several sunken vessels, which Mr. Lake or some member of his crew examined through the open door in the bottom of the diving-compartment. The air inside was kept at a sufficiently high pressure to keep the water from entering, and the man in the submarine could pull up pieces of the wreck with a short boathook, or even reach down and place his bare hand on the back of a big fish swimming past. Sometimes members of the crew would put on diving-suits and walk out over the bottom, keeping in communication with the boat by telephone. Telephone stations were even established on the bottom of the bay, with cables running to the nearest exchange on shore, and conversations were held with people in Baltimore, Washington, and New York. (Perhaps the commanders of German submarines in British waters to-day are using this method to communicate with German spies in London, Dublin, and Liverpool.)

The Spanish-American War was being fought while Mr. Lake was making these experiments. The entrance to Hampton Roads was planted with electric mines, but though he was forbidden to go too near them, the inventor proved that nothing would be easier than to locate the cable connecting them with the shore, haul it up into the diver’s compartment of the Argonaut and cut it. He did this with a dummy cable of his own, and then repeatedly begged the navy department to let him take the Argonaut into the harbor of Santiago de Cuba and disable the mines that were keeping Admiral Sampson’s fleet from going in and smashing the Spanish squadron there. But his offer, like that of John P. Holland, was refused.

“In 1898, also,” says Mr. Lake, “the Argonaut made the trip from Norfolk to New York under her own power and unescorted. In her original form she was a cigar-shaped craft with only a small percentage of reserve buoyancy in her surface cruising condition. We were caught out in the severe November northeast storm of 1898 in which over two hundred vessels were lost and we did not succeed in reaching a harbor in the ‘horseshoe’ back of Sandy Hook until three o’clock in the morning. The seas were so rough they would break over her conning-tower in such masses I was obliged to lash myself fast to prevent being swept overboard. It was freezing weather and I was soaked and covered with ice on reaching harbor.”

Courtesy of International Marine Engineering.
Argonaut as Rebuilt.

Mr. Lake then sent the Argonaut to a Brooklyn shipyard, where her original cigar-shaped hull was cut in half, and lengthened twenty feet, after which a light ship-shaped superstructure was built over her low sloping topsides. To keep it from being crushed in by water pressure when submerged, scupper-like openings were cut in the thin plating where it joined the stout, pressure-resisting hull, so that the superstructure automatically filled itself with sea-water on submerging and drained itself on rising again. Though uninhabitable, its interior supplied useful storage space, particularly for the gasoline fuel tanks, which, as Mr. Lake had already discovered, gave off fumes that soon rendered the air inside the submarine unbreathable, unless the tanks were kept outside instead of inside the hull. The swan-bow and long bowsprit of the new superstructure, together with the two ventilator-masts, gave the rebuilt Argonaut a schooner-like appearance, and her bowsprit has been compared to the whip-socket on the dashboard of the earliest automobiles. But Mr. Lake declares that this was no useless leftover but a practicable spring-buffer to guard against running into submerged rocks, while the bobstay helped the Argonaut to climb over the obstruction, as she could over anything on the sea-bottom she could get her bows over.

Primarily, the superstructure served to make the submarine more seaworthy as a surface craft. Until then, most inventors and designers of undersea boats had confined their attentions to the problems of underwater navigation only, because, as had been pointed out by the monk Mersenne before 1648, even during the most violent storms the disturbance is felt but a little distance below the surface. But Mr. Lake realized that a submarine, like every other kind of boat, spends most of its existence on top of the water and that it is not always desirable to submerge whenever a moderate-sized wave sweeps over one of the old-fashioned, low-lying, cigar-shaped vessels. With her new superstructure, the Argonaut rode the waves as lightly as any yacht and ushered in the era of the sea-going submarine.

It was not until a year later that the Narval, a large double-hulled submarine with a ship-shaped outer shell of light, perforated plating, was launched in France. She was propelled by steam on the surface and by storage batteries when submerged. To distinguish this sea-going torpedo-boat, that could be submerged, from the earlier and simpler submarines designed and engined for underwater work only, her designer, M. Labeuf, called the Narval a “submersible.” As the old type of boat soon became extinct, the distinction was not necessary and the old name “submarine” is still applied to all underwater craft. That Simon Lake and not M. Labeuf first gave the modern sea-going submarine its characteristic and essential superstructure is easily proved by dates. The Narval was launched in October, 1899, the Argonaut was remodeled in December, 1898, and on April 2, 1897, Mr. Lake applied for and was presently granted the pioneer patent on a “combined surface and submarine vessel,” the space between its cylindrical hull and the superstructure “being adapted to be filled with water when the vessel is submerged and thus rendered capable of resisting the pressure of the water.”

But though in her remodeled form she became the forerunner of the long grim submarine cruisers of to-day, the Argonaut herself had been built to serve not as a warship but as a commercial vessel. Like her namesakes who followed Jason in the Argo to far-off Colchis for the Golden Fleece, she was to go forth in search of hidden treasure. She was to have been the first of a fleet of wheeled bottom-workers, salvaging the cargoes of wrecked ships; from the mail-bags of the latest lost liner to ingots and pieces-of-eight from the sand-clogged hulks of long-sunk Spanish galleons, or bringing up sponges, coral, and pearls from the depths of the tropic seas. But though he investigated a few wrecks and ingeniously transferred a few tons of coal from one into a submarine lighter by means of a pipe-line and a powerful force-pump, Mr. Lake has done nothing more to develop the fascinating commercial possibilities of the submarine since 1901, because he has been kept too busy building undersea warships for the United States and other naval powers.

Courtesy of International Marine Engineering.
The Rebuilt Argonaut, Showing Pipe-masts and Ship-shaped Superstructure.

Mr. Lake declares that one of his up-to-date wheeled submarines could enter a harbor-mouth defended by booms and nettings that would keep out either surface torpedo boats or ordinary submarines. The smooth-backed bottom-worker of this special type would slip under the netting like a cat under a bead portiÈre. If the netting were fastened down, a diver would step out through the door in the bottom of the submarine and either cut the netting from its moorings or attach a bomb to blow a hole for the bottom-worker to go in through. An ordinary submarine, entering a hostile harbor, would be in constant danger of running aground in shallow water and either sticking there or rebounding to the surface, to be seen and fired at by the enemy. Even if its commander succeeded in keeping to the deep channel by dead reckoning—a process akin to flying blindfolded in an aeroplane up a crooked ravine and remembering just when and where to turn—even if he dodged the rocks and sand bars, he would be liable to bump the nose of his boat against an anchored contact mine (see Chapter XI). But the Lake bottom-worker would trundle steadily along, sampling the bottom to find where it was, and passing safely under the mines floating far above it. The divers would make short work of cutting the mine cables, or they might plant mines of their own under the ships in the harbor and blow them up as Bushnell tried to. Using electric motors and storage air-flasks, with no pipe masts or other “surface-indications” to betray its presence, one of these boats could remain snugly hid at the bottom of an enemy’s harbor as long as its supplies held out.

Courtesy of Mr. Simon Lake.
Cross-section of Diving-compartment on a Lake Submarine.

As yet, however, we have not heard of any such exploits in the present war, though they seem perfectly feasible. Mr. Lake sold a boat designed for this sort of work and called the Protector to Russia in 1906.

The most characteristic feature of the Lake submarines is not the wheels, which are found only on those specially designed for bottom working, but the hydroplanes. These are horizontal rudders that are so placed and designed as to steer the boat forward and downward, but at the same time keeping it on an even keel. Bushnell and Nordenfeldt forced their boats straight up and down like buckets in a well, John P. Holland made his tip up its tail and dive like a loon, but Mr. Lake conceived the idea of having his boat descend like a suitcase carried by a man walking down-stairs: the suitcase moves steadily forward and downward towards the front door but it remains level. The first method with its vertical propellers wasted too much energy, the second incurred the risk of diving too fast and too deep, no matter whether the single pair of horizontal rudders were placed on the bow, or amidships, or on the stern. So Mr. Lake used two pairs of horizontal rudders “located at equal distances forward and aft of the center of gravity and buoyancy of the vessel when in the submerged condition, so as not to disturb the trim of the vessel when the planes were inclined down or up to cause the vessel to submerge or rise when under way.” These he called hydroplanes, to distinguish them from another set of smaller horizontal rudders, which at first he called “leveling-vanes” and which were not used to steer the submarine under but manipulated to keep her at a constant depth and on a level keel while running submerged.

In theory, the early Lake boats were submerged on an even keel; in practice, they went under at an angle of several degrees. But they made nothing like the abrupt dives of the Holland.

“As the Electric Boat Company’s boats (Holland type) increased in size,” declares Chief Constructor D. W. Taylor, U.S.N., “bow rudders were fitted, and nowadays all submarines of this type in our navy are fitted with bow rudders as well as stern rudders. The Lake type submarines are still fitted with hydroplanes. But as you may see, means for effecting submergence have approached each other very closely: in fact, speaking generally, submarines all over the world now have two or more sets of diving-rudders; the most general arrangement is one pair forward and one pair aft; in some types three pairs are fitted, but this arrangement is more unusual.

“In general it may be said then that modern submarines of both types submerge in practically the same way. They assume a very slight angle of inclination, say a degree and a half or two degrees, and submerge at this angle. This may be said to be practically on an even keel.”

Courtesy of International Marine Engineering.
Cross-section of the Protector, showing wheels stowed away when not running on the sea bottom.

The credit of originating this now world-wide practice of “level-keel submergence” obviously belongs, as “Who’s Who in America” gives it, to

“Lake, Simon, naval architect, mechanical engineer. Born at Pleasantville, New Jersey, September 4, 1866; son of John Christopher and Miriam M. (Adams) Lake; educated at Clinton Liberal Institute, Fort Plain, New York, and Franklin Institute, Philadelphia; married Margaret Vogel of Baltimore, June 9, 1890. Inventor of even keel type of submarine torpedo boats; built first experimental boat, 1894; built Argonaut, 1897 (first submarine to operate successfully in the open sea); has designed and built many submarine torpedo boats for the United States and foreign countries; spent several years in Russia, Germany, and England, designing, building, and acting in an advisory capacity in construction of submarine boats. Also inventor of submarine apparatus for locating and recovering sunken vessels and their cargoes; submarine apparatus for pearl and sponge fishing, heavy oil internal combustion engine for marine propulsion, etc. Member of the Society of Naval Architects and Marine Engineers, American Society of Mechanical Engineers, American Society of Naval Engineers, Institute of Naval Architects (London), Schiffsbautechnische Gesellschaft (Berlin). Mason. Clubs, Engineers’ (New York), Algonquin, (Bridgeport, Connecticut). Home, Milford, Connecticut. Office, Bridgeport, Connecticut.”

Mr. Simon Lake.

When the Krupps first took up the idea of constructing submarines for the German and Russian governments, the great German firm consulted with Mr. Lake, who was at that time living in Europe. An elaborate contract was drawn up between them. The Krupps agreed to employ Mr. Lake in an advisory capacity and to build “Lake type” boats, both in Russia, where they were to erect a factory and share the profits with him, and in Germany, on a royalty basis. Before he could sign this contract, Mr. Lake had to obtain the permission of the directors of his own company in Bridgeport. In the meanwhile, he gave the German company his most secret plans and specifications. But the Krupps never signed the contract, withdrew from going into Russia, and their lawyer coolly told Mr. Lake that, as he had failed to patent his inventions in Germany, his clients were perfectly free to build “Lake type” submarines there without paying him anything and were going to do so.

The famous Krupp-built German submarines that are playing so prominent a part in the present war are therefore partly of American design. Whenever Mr. Lake reads that another one of them has been destroyed by the Allies, his emotions must be rather mixed.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page