THE WORLD AND US

Previous

An Introductory Discussion of the Philosophy of Relativity, and of the Mechanism of Our Contact with Time and Space

From a time beyond the dawn of history, mankind has been seeking to explain the universe. At first the effort did not concern itself further probably than to make a supposition as to what were the causes of the various phenomena presented to the senses. As knowledge increased, first by observation and later by experiment also, the ideas as to these causes passed progressively through three stages—the theological (the causes were thought to be spirits or gods); the metaphysical (the causes were thought in this secondary or intermediate stage to be some inherent, animating, energizing principles); and the scientific (the causes were finally thought of as simply mechanical, chemical, and magneto-electrical attractions and repulsions, qualities or characteristics of matter itself, or of the thing of which matter is itself composed.)

With increase of knowledge, and along with the inquiry as to the nature of causes, there arose an inquiry also as to what reality was. What was the essential nature of the stuff of which the universe was made, what was matter, what were things in themselves, what were the noumena (the realities), lying back of the phenomena (the appearances)? Gradually ideas explaining motion, force, and energy were developed. At the same time inquiry was made as to the nature of man, the working of his mind, the nature of thought, the relation of his concepts (ideas) to his perceptions (knowledge gained through the sense) and the relations of both to the noumena (realities).]283

[The general direction taken by this inquiry has been that of a conflict between two schools of thought which we may characterize as those of absolutism and of relativism.]* [The ancient Greek philosophers believed that they could tap a source of knowledge pure and absolute by sitting down in a chair and reasoning about the nature of time and space, and the mechanism of the physical world.]221 [They maintained that the mind holds in its own right certain concepts than which nothing is more fundamental. They considered it proper to conceive of time and space and matter and the other things presented to their senses by the world as having a real existence in the mind, regardless of whether any external reality could be identified with the concept as ultimately put forth. They could even dispute with significance the qualities which were to be ascribed to this abstract conceptual time and space and matter. All this was done without reference to the external reality, often in defiance of that reality. The mind could picture the world as it ought to be; if the recalcitrant facts refused to fit into the picture, so much the worse for them. We all have heard the tale of how generation after generation of Greek philosophers disputed learnedly why and how it was that a live fish could be added to a brimming pail of water without raising the level of the fluid or increasing the weight; until one day some common person conceived the troublesome idea of trying it out experimentally to learn whether it were so—and found that it was not. True or false, the anecdote admirably illustrates the subordinate place which the externals held in the absolutist system of Greek thought.]*

[Under this system a single observer is competent to examine a single phenomenon, and to write down the absolute law of nature by referring the results to his innate ideas of absolute qualities and states. The root of the word absolute signifies “taking away,” and in its philosophical sense the word implies the ability of the mind to subtract away the properties or qualities from things, and to consider these abstract qualities detached from the things; for example, to take away the coldness from ice, and to consider pure or abstract coldness apart from anything that is cold; or to take away motion from a moving body, and to consider pure motion apart from anything that moves. This assumed power is based upon the Socratic theory of innate ideas. According to this theory the mind is endowed by nature with the absolute ideas of hardness, coldness, roundness, equality, motion, and all other absolute qualities and states, and so does not have to learn them. Thus a Socratic philosopher could discuss pure or absolute being, absolute space and absolute time.]121

Getting Away from the Greek Ideas

[This Greek mode of thought persisted into the late Middle Ages, at which time it was still altogether in order to dispose of a troublesome fact of the external world by quoting Aristotle against it. During the Renaissance, which intellectually at least marks the transition from ancient to modern, there came into being another type of absolutism, equally extreme, equally arbitrary, equally unjustified. The revolt against the mental slavery to Greek ideas carried the pendulum too far to the other side, and early modern science as a consequence is disfigured by what we must now recognize as gross materialism. The human mind was relegated to the position of a mere innocent bystander. The external reality was everything, and aside from his function as a recorder the observer did not in the least matter. The whole aim of science was to isolate and classify the elusive external fact. The rÔle of the observer was in every possible way minimized. It was of course his duty to get the facts right, but so far as any contribution to these was concerned he did not count—he was definitely disqualified. He really played the part of an intruder; from his position outside the phenomena he was searching for the absolute truth about these phenomena. The only difference between his viewpoint and that of Aristotle was that the latter looked entirely inside himself for the elusive “truth,” while the “classical” scientist, as we call him now, looked for it entirely outside himself.

Let me illustrate the difference between the two viewpoints which I have discussed, and the third one which I am about to outline, by another concrete instance. The Greeks, and the medievals as well, were fond of discussing a question which embodies the whole of what I have been saying. This question involved, on the part of one who attempted to answer it, a choice between the observer and the external world as the seat of reality. It was put in many forms; a familiar one is the following: “If the wind blew down a great tree at a time and place where there was no conscious being to hear, would there be any noise?” The Greek had to answer this question in the negative because to him the noise was entirely a phenomenon of the listener. The classical scientist had to answer it in the affirmative because to him the noise was entirely a phenomenon of the tree and the air and the ground. Today we answer it in the negative, but for a very different reason from that which swayed the Greek. We believe that the noise is a joint phenomenon of the observer and the externals, so that in the absence of either it must fail to take existence. We believe there are sound waves produced, and all that; but what of it? There is no noise in the presence of the falling tree and the absence of the observer, any more than there would be in the presence of the observer and the absence of the tree and the wind; the noise, a joint phenomenon of the observer and the externals, exists only in their joint presence.

Relativism and Reality

This is the viewpoint of relativism. The statue is golden for one observer and silver to the other. The sun is rising here and setting in another part of the world. It is raining here and clear in Chicago. The observer in Delft hears the bombardment of Antwerp and the observer in London does not. If they were to be consistent, both the Greek and the medieval-modern absolutist would have to dispute whether the statue were “really” golden or silver, whether the sun were “really” rising or setting, whether the weather were “really” fair or foul, whether the bombardment were “really” accompanied by loud noises or not; and on each of these questions they would have to come to an agreement or confess their methods inadequate. But to the relativist the answer is simple—whether this or that be true depends upon the observer. In simple cases we understand this full well, as we have always realized it. In less simple cases we recognize it less easily or not at all, so that some of our thought is absolutist in its tendencies while the rest is relativistic. Einstein is the first ever to realize this fully—or if not this, then the first ever to realize it so fully as to be moved toward a studied effort to free human thought from the mixture of relativism and absolutism and make it consistently the one or the other.

This brings it about that the observed fact occupies a position of unexpected significance. For when we discuss matters of physical science under a strictly relativistic philosophy, we must put away as metaphysical everything that smacks of a “reality” partly concealed behind our observations. We must focus attention upon the reports of our senses and of the instruments that supplement them. These observations, which join our perceptions to their external objects, afford us our only objective manifestations; them we must accept as final—subject always to such correction as more refined observations may suggest. The question whether a “true” length or area or mass or velocity or duration or temperature exists back of the numerical determination, or in the presence of a determination that is subject to correction, or in the absence of any determination at all, is a metaphysical one and one that the physicist must not ask. Length, area, mass, velocity, duration, temperature—none of these has any meaning other than the number obtained by measurement.]* [If several different determinations are checked over and no error can be found in any of them, the fault must lie not with the observers but with the object, which we must conclude presents different values to different observers.]33

[We are after all accustomed to this viewpoint; we do not demand that Pittsburgh shall present the same distance from New York and from Philadelphia, or that the New Yorker and the Philadelphian come to any agreement as to the “real” distance of Pittsburgh. The distance of Pittsburgh depends upon the position of the observer. Nor do we demand that the man who locates the magnetic pole in one spot in 1900 and in another in 1921 come to a decision as to where it “really” is; we accept his statement that its position depends upon the time of the observation.

What this really means is that the distance to Pittsburgh and the position of the magnetic pole are joint properties of the observer and the observed—relations between them, as we might put it. This is obvious enough in the case of the distance of Pittsburgh; it is hardly so obvious in the case of the position of the magnetic pole, varying with the lapse of time. But if we reflect that the observation of 1900 and that of 1921 were both valid, and both represented the true position of the pole for the observer of the date in question, we must see that this is the only explanation that shows us the way out.

I do not wish to speak too definitely of the Einstein theories in these introductory remarks, and so shall refrain from mentioning explicitly in this place the situation which they bring up and upon which what I have just said has direct bearing. It will be recognized when it arises. What must be pointed out here, however, is that we are putting the thing which the scientist calls the “observed value” on a footing of vastly greater consequence than we should have been willing offhand to concede to it. So far as any single observer is concerned, his own best observed values are themselves the external world; he cannot properly go behind the conditions surrounding his observations and speak of a real external world beyond these observations. Any world which he may think of as so existing is purely a conceptual world, one which for some reason he infers to exist behind the deceptive observations. Provided he makes this reservation he is quite privileged to speculate about this concealed world, to bestow upon it any characteristics that he pleases; but it can have no real existence for him until he becomes able to observe it. The only reality he knows is the one he can directly observe.

Laws of Nature

The observations which we have been discussing, and which we have been trying to endow with characteristics of “reality” which they are frequently not realized to possess, are the raw material of physical science. The finished product is the result of bringing together a large number of these observations.]* [The whole underlying thought behind the making of observations, in fact, is to correlate as many as possible of them, to obtain some generalization, and finally to express this in some simple mathematical form. This formulation is then called a “law of nature.”]35

[Much confusion exists because of a misunderstanding in the lay mind of what is meant by a “law of nature.” It is perhaps not a well chosen term. One is accustomed to associate the word law with the idea of necessity or compulsion. In the realm of nature the term carries no such meaning. The laws of nature are man’s imperfect attempts to explain natural phenomena; they are not inherent in matter and the universe, not an iron bar of necessity running through worlds, systems and suns. Laws of nature are little more than working hypotheses, subject to change or alteration or enlargement or even abandonment, as man’s vision widens and deepens. No sanctity attaches to them, and if any one, or all, of them fail to account for any part, or all, of the phenomena of the universe, then it or they must be supplemented or abandoned.]102

[The test of one of these laws is that it can be shown to include all the related phenomena hitherto known and that it enables us to predict new phenomena which can then be verified. If new facts are discovered that are not in agreement with one of these generalized statements, the assumptions on which the latter is based are examined, those which are not in accordance with the new facts are given up, and the statement is modified so as to include the new facts.]10 [And if one remembers that the laws of physics were formerly based on a range of observations much narrower than at present available, it seems natural that in the light of this widening knowledge one law or another may be seen to be narrow and insufficient. New theories and laws do not necessarily disprove old ones, but explain certain discrepancies in them and penetrate more deeply into their underlying principles, thereby broadening our ideas of the universe. To follow the new reasoning we must rid ourselves of the prejudice behind the old, not because it is wrong but because it is insufficient. The universe will not be distorted to fit our rules, but will teach us the rules of existence.]125

[Always, however, we must guard against the too easy error of attributing to these rules anything like absolute truth.]* [The modern scientist has attained a very business-like point of view toward his “laws of nature.” To him a law is fundamentally nothing but a short-hand way of expressing the results of a large number of experiments in a single statement. And it is important to remember that this mere shortening of the description of a lot of diverse occurrences is by no means any real explanation of how and why they happened. In other words, the aim of science is not ultimately to explain but only to discover the relations that hold good among physical quantities and to embody all these relations in as few and as simple physical laws as possible.]221 [This is inherently the method of relativism.]* [Under it a set of phenomena is observed. There are two or many observers, and they write down their several findings. These are reviewed by a final observer or judge, who strains out the bias due to the different viewpoints of the original observers. He then writes down, not any absolute law of nature governing the observed phenomena, but a law as general as possible expressing their interrelations.]121 [And through this procedure modern science and philosophy reveal with increasing emphasis that we superimpose our human qualities on external nature to such an extent that]106 [we have at once the strongest practical justification, in addition to the arguments of reason, for our insistence that the contact between objective and subjective represented by the observation is the only thing which we shall ever be able to recognize as real. We may indulge in abstract metaphysical speculation to our heart’s content, if we be metaphysically inclined; we may not attempt to impose the dicta of metaphysics upon the physical scientist.]*

Concepts and Realities

[From the inquiry and criticism which have gone on for centuries has emerged the following present-day attitude of mind toward the sum total of our knowledge. The conceptual universe in our minds in some mysterious way parallels the real universe, but is totally unlike it. Our conceptions (ideas) of matter, molecules, atoms, corpuscles, electrons, the ether, motion, force, energy, space, and time stand in the same or similar relation to reality as the x’s and y’s of the mathematician do to the entities of his problem. Matter, molecules, atoms, corpuscles, electrons, the ether, motion, force, energy, space, and time do not exist actually and really as we conceive them, nor do they have actually and really the qualities and characteristics with which we endow them. The concepts are simply representations of things outside ourselves; things which, while real, have an essential nature not known to us. Matter, molecules, atoms, corpuscles, electrons, the ether, motion, force, energy, space and time are merely devices, symbols, which enable us to reason about reality. They are parts of a conceptual mechanism in our minds which operates, or enables our minds to operate, in the same sequence of events as the sequence of phenomena in the external universe, so that when we perceive by our senses a group of phenomena in the external universe, we can reason out what result will flow from the interaction of the realities involved, and thus predict what the situation will be at a given stage in the sequence.

But while our conceptual universe has thus a mechanical aspect, we do not regard the real universe as mechanical in its nature.]283 [This may be illustrated by a little story. Entering his friend’s house, a gentleman is seized unawares from behind. He turns his head but sees nothing. His hat and coat are removed and deposited in their proper places by some invisible agent, seats and tables and refreshments appear in due time where they are required, all without any apparent cause. The visitor shivers with horror and asks his host for an explanation. He is then told that the ideas “order” and “regularity” are at work, and that it is they who acquit themselves so well of their tasks. These ideas cannot be seen nor felt nor seized nor weighed; they reveal their existence only by their thoughtful care for the welfare of mankind. I think the guest, coming home, will relate that his friend’s house is haunted. The ghosts may be kind, benevolent, even useful; yet ghosts they are. Now in Newtonian mechanics, absolute space and absolute time and force and inertia and all the other apparatus, altogether imperceptible, appearing only at the proper time to make possible a proper building up of the theory, play the same mysterious part as the ideas “order” and “regularity” in my story. Classical mechanics is haunted.]116

[As a matter of fact, we realize this and do not allow ourselves to be imposed upon with regard to the true nature of these agencies.]* [We use a mechanistic terminology and a mechanistic mode of reasoning only because we have found by experience that they facilitate our reasoning. They are the tools which we find produce results. They are adapted to our minds, but perhaps it would be better to say that our minds are so constructed as to render our conceptual universe necessarily mechanical in its aspect in order that our minds may reason at all. Two things antithetic are involved—subject (our perceiving mind which builds up concepts) and object (the external reality); and having neither complete nor absolute knowledge of either, we cannot affirm which is more truly to be said to be mechanistic in its nature, though we may suspect that really neither is. We no longer think of cause and effect as dictated by inherent necessity, we simply regard them as sequences in the routine of our sense-impressions of phenomena. In a word, we have at length grasped the idea that our notions of reality, at present at least, whatever they may become ultimately, are not absolute, but simply relative. We see, too, that we do not explain the universe, but only describe our perceptions of its contents.

The so-called laws of nature are simply statements of formulÆ which resume or sum up the relationships and sequences of phenomena. Our effort is constantly to find formulÆ which will describe the widest possible range of phenomena. As our knowledge increases, that is, as we perceive new phenomena, our laws or formulÆ break down, that is, they fail to afford a description in brief terms of all of our perceptions. It is not that the old laws are untrue, but simply that they are not comprehensive enough to include all of our perceptions. The old laws are often particular or limiting instances of the new laws.]283

[From what we have said of the reality of observations it follows that we must support that school of psychology, and the parallel school of philosophy, which hold that concepts originate in perceptions. But this does not impose so strong a restriction upon conceptions as might appear. The elements of all our concepts do come to us from outside; we manufacture nothing out of whole cloth. But when perception has supplied a sufficient volume of raw material, we may group its elements in ways foreign to actual occurrence in the perceptual world, and in so doing get conceptual results so entirely different from what we have consciously perceived that we are strongly tempted to look upon them as having certainly been manufactured in our minds without reference to the externals. Of even more significance is our ability to abstract from concrete objects and concrete incidents the essential features which make them alike and different. But unlike the Greeks, we see that our concept of coldness is not something with which we were endowed from the beginning, but merely an abstraction from concrete experiences with concrete objects that have been cold.

The Concepts of Space and Time

When we have formed the abstract ideas of coldness and warmth, and have had experience indicating that the occurrence of these properties varies in degree, we are in a position to form the secondary abstract notion covered by the word “temperature.” When we have formed the abstract ideas of size and position and separation, we are similarly in a position to form a secondary abstraction to which we give the name “space.” Not quite so easy to trace to its definite source but none the less clearly an abstraction based on experience, is our idea of what we call “time.” None of us are deceived as to the reality of these abstractions.]* [We do not regard space as real in the sense that we regard a chair as real; it is merely an abstract idea convenient for the location of material objects like the chair.]198 [Nor do we regard time as real in this sense. Things occupy space, events occupy time; space and time themselves we realize are immaterial and unreal; space does not exist and time does not happen in the same sense that material objects exist and events occur. But we find it absolutely necessary to have, among the mental machinery mentioned above as the apparatus by aid of which we keep track of the external world, these vessels for that world to exist in and move in.

Space and time, then, are concepts.]* [It is not strange, however, that when confronted with the vast and bewildering complexity of the universe and the difficulty of keeping separate and distinct in our minds our perceptions and conceptions, we should at times and as respects certain things project our conceptions illegitimately into the perpetual universe and mistake them for perceptions. The most notable example perhaps of this projection has occurred in the very case of space and time, most fundamental of all of our concepts. We got to think of these as absolute, as independent of each other and of all other things, and as always existing and continuing to exist whether or not we or anything else existed—space as a three-dimensional, uniform continuum, having the same properties in all directions; time as a one-dimensional, irreversible continuum, flowing in one direction. It is difficult to get back to the idea that space and time so described and defined are concepts merely, for the idea of their absolute existence is ingrained in us as the result probably of long ancestral experience.]283

[Newton’s definitions of course represent the classical idea of time and space. He tells us that “absolute, true and mathematical time flows in virtue of its own nature, uniformly and without reference to any external object;” and that “absolute space, by virtue of its own nature and without reference to any external object, always remains the same and is immovable.” Of course from modern standpoints it is absurd to call either of these pronouncements a definition; but they represent about as well as any words can the ideas which Newton had about time and space, and they make it clear enough that he regarded both as having real existence in the external world.

If space and time are to be the vessels of our universe, and if the only thing that really matters is measured results, it is plain enough that we must have, from the very beginning, means of measuring space and time. Whether we believe space and time to have real existence or not, it is obvious that we can measure neither directly. We shall have to measure space by measuring from one material object to another; we shall have to measure time by some similar convention based on events. We shall later have something further to say about the measurement of time; for the present we need only point out that]* [Newtonian time is measured independently of space; and the existence is presupposed of a suitable timekeeper.]10

[The space of Galileo and Newton was conceived of as empty, except in so far as certain parts of it were occupied by matter. Positions of bodies in this space were in general determined by reference to]283 [a “coordinate system” of some kind. This is again something that demands a certain amount of discussion.

The Reference Frame for Space

The mathematician, following the lead of the great French all-around genius, Descartes, shows us very clearly how to set up, for the measurement of space, the framework known as the Cartesian coordinate system. The person of most ordinary mathematical attainments will realize that to locate a point in a plane we must have two measurements; and we could probably show this person, without too serious difficulty, that we can locate a point in any surface by two measurements. An example of this is the location of points on the earth’s surface by means of their latitude and longitude. It is equally clear that if we add a third dimension and attempt to locate points in space, we must add a third measurement. In the case of points on the earth’s surface, this might be the elevation above sea level, which would define the point not as part of the spherical surface of the earth but as part of the solid sphere. Or we may fall back on Dr. Slosson’s suggestion that in order to define completely the position of his laboratory, we must make a statement about Broadway, and one about 116th Street, and one telling how many flights of stairs there are to climb. In any event, it should be clear enough that the complete definition of a point in space calls for three measurements.

The mathematician formulates all this with the utmost precision. He asks us to]* [pick out any point whatever in space and call it O. We then draw or conceive to be drawn through this point three mutually perpendicular lines called coordinate axes, which we may designate OX, OY and OZ, respectively. Finally, we consider the three planes also mutually perpendicular like the two walls and the floor of a room that meet in one common corner, which are formed by the lines OX and OY, OY and OZ, and OZ and OX, respectively. These three planes are called coordinate planes. And then any other point P in space can be represented with respect to O by its perpendicular distances from each of the three coordinate planes—the distances x, y, z in the figure. These quantities are called the coordinates of the point.]272

[To the layman there seems something altogether naive in this notion of the scientist’s setting up the three sides of a box in space and using them as the basis of all his work. The layman somehow feels that while it is perfectly all right for him to tell us that he lives at 1065 (one coordinate) 156th Street (two coordinates) on the third floor (three coordinates), it is rather trivial business for the serious-minded scientist to consider the up-and-down, the forward-and-back, the right-and-left of every point with which he has occasion to deal. There seems to the layman something particularly inane and foolish and altogether puerile about a set of coordinate axes, and you simply can’t make him believe that the serious-minded scientist has to monkey with any such funny business. He can’t be induced to take this coordinate-axis business seriously. Nevertheless, the fact is that the scientist takes it with the utmost seriousness. It is necessary for him to define the positions of points; and he does do it by means of a set of coordinate axes.

The scientist, however, is not interested in points of empty space. The point is to him merely part again of the conceptual machinery which he uses in his effort to run along with the external world. He knows there are no real points, but it suits his convenience to keep track of certain things that are real by representing them as points. But these things are in practically every instance material bodies; and in practically every instance, instead of staying put in one spot, they insist upon moving about through space. The scientist has to use his coordinate system, not merely to define a single position of such a “point,” but to keep track of the path over which it moves and to define its position in that path at given moments.

Time and the Coordinate System

This introduces the concept of time into intimate relationship with the spatial coordinate system. And at once we feel the lack of a concrete, visualized fourth dimension.]* [If we want to fix objects in the floor alone, the edge of the room running toward the ceiling would become unnecessary and could be dropped from our coordinate system. That is, we need only two coordinates to fix the position of a point in a plane. Suppose instead of discarding the third coordinate, we use it to represent units of time. It then enables us to record the time it took a moving point in the floor to pass from position to position. Certain points in the room would be vertically above the corresponding points occupied by the moving point in its path across the floor; and the vertical height above the floor of such points corresponds to a value of the time-coordinate which indicates the time it took the point to move from position to position.]152 [Just as the path of the point across the floor is a continuous curve (for the mathematician, it should be understood, this term “curve” includes the straight line, as a special case in which the curvature happens to be zero); so the series of points above these in the room forms a continuous curve which records for us, not merely the path of the point across the floor, but in addition the time of its arrival at each of its successive positions. In the algebraic work connected with such a problem, the third coordinate behaves exactly the same, regardless of whether we consider it to represent time or a third spatial dimension; we cannot even tell from the algebra what it does represent.

When we come to the more general case of a point moving freely through space, we have but three coordinates at our disposal; there is not a fourth one by aid of which we can actually diagram its time-space record. Nevertheless, we can write down the numerical and algebraic relations between its three space-coordinates and the time which it takes to pass from one position to another; and by this means we can make all necessary calculations. Its motion is completely defined with regard both to space and to time. We are very apt to call attention to the fact that if we did have at our disposal a fourth, space-coordinate, we could use it to represent the time graphically, as before, and actually construct a geometric picture of the path of our moving point with regard to space and time. And on this account we are very apt to speak as though the time measurements constituted a fourth coordinate, regardless of any question of our ability to construct a picture of this coordinate. The arrival of a point in a given position constitutes an event; and this event is completely defined by means of four coordinates—three in space, which we can picture on our coordinate axes, and one in time which we cannot.

The set of coordinate axes in space, together with the zero point from which we measure time, constitute what we call a frame of reference. If we are not going to pay any attention to time, we can think of the space coordinate system alone as constituting our reference frame. This expression appears freely throughout the subsequent text, and always with one or the other of these interpretations.

We see, then, how we can keep track of a moving point by keeping track of the successive positions which it occupies in our reference frame.]* [Now we have implied that these coordinate axes are fixed in space; but there is nothing to prevent us from supposing that they move.]272 [If they do, they carry with them all their points; and any motion of these points which we may speak about will be merely motion with reference to the coordinate system. If we find something outside our coordinate system that is not moving, the motion of points in our system with regard to those outside it will be a combination of their motion with regard to our coordinate axes and that of these axes with regard to the external points. This will be a great nuisance; and it represents a state of affairs which we shall try to avoid. We shall avoid it, if at all, by selecting a coordinate system with reference to which we, ourselves, are not moving; one which partakes of any motion which we may have. Or perhaps we shall sometimes wish to reverse the process, in studying the behavior of some group of bodies, and seek a set of axes which is at rest with respect to these bodies; one which partakes of any motion they may have.

The Choice of a Coordinate Frame

All this emphasizes the fact that our coordinate axes are not picked out for us in advance by nature, and set down in some one particular spot. We select them for ourselves, and we select them in the most convenient way. But different observers, or perhaps the same observer studying different problems, will find it advantageous to utilize different coordinate systems.]* [The astronomer has found it possible, and highly convenient, to select a coordinate frame such that the great majority of the stars have, on the whole, no motion with respect to it.]283 [Such a system would be most unsuited for investigations confined to the earth; for these we naturally select a framework attached to the earth, with its origin O at the earth’s center if our investigation covers the entire globe and at some more convenient point if it does not, and in either event accompanying the earth in its rotation and revolution. But such a framework, as well as the one attached to the fixed stars, would be highly inconvenient for an investigator of the motions of the planets; he would doubtless attach his reference frame to the sun.]101

[In this connection a vital question suggests itself. Is the expression of natural law independent of or dependent upon the choice of a system of coordinates? And to what extent shall we be able to reconcile the results of one observer using one reference frame, and a second observer using a different one? The answer to the second question is obvious.]* [True, if any series of events is described using two different sets of axes, the descriptions will be different, depending upon the time system adopted and the relative motion of the axes. But if the connection between the reference systems is known, it is possible by mathematical processes to deduce the quantities observed in one system if those observed in the other are known.]35 [This process of translating the results of one observer into those of another is known as a transformation; and the mathematical statement of the rule governing the transformation is called the equation or the equations (there are usually several of them) of the transformation.]* [Transformations of this character constitute a well-developed branch of mathematics.]35

[When we inquire about the invariance of natural law it is necessary to be rather sure of just what we mean by this expression. The statement that a given body is moving with a velocity of 75 miles per hour is of course not a natural law; it is a mere numerical observation. But aside from such numerical results, we have a large number of mathematical relations which give us a more or less general statement of the relations that exist between velocities, accelerations, masses, forces, times, lengths, temperatures, pressures, etc., etc. There are some of these which we would be prepared to state at once as universally valid—distance travelled equals velocity multiplied by time, for instance. We do not believe that any conceivable change of reference systems could bring about a condition in which the product of velocity and time, as measured from a certain framework, would fail to equal distance as measured from this same framework. There are other relations more or less of the same sort which we probably believe to be in the same invariant category; there are others, perhaps, of which we might be doubtful; and presumably there are still others which we should suspect of restricted validity, holding in certain reference systems only and not in others.

The question of invariance of natural law, then, may turn out to be one which may be answered in the large by a single statement; it may equally turn out to be one that has to be answered in the small, by considering particular laws in connection with particular transformations between particular reference systems. Or, perhaps, we may find ourselves justified in taking the stand that an alleged “law of nature” is truly such a law only in the event that it is independent of the change from one reference system to another. In any event, the question may be formulated as follows:

Observer A, using the reference system R, measures certain quantities t, w, x, y, z. Observer B, using the reference system S, measures the same items and gets the values t', w', x', y', z'. The appropriate transformation equations for calculating the one set of values from the other is found. If a mathematical relation of any sort is found to exist between the values t, w, x, y, z, will the same relation exist between the values t', w', x', y', z'? If it does not, are we justified in still calling it a law of nature? And if it does not, and we refrain from calling it such a law, may we expect in every case to find some relation that will be invariant under the transformation, and that may therefore be recognized as the natural law connecting t, w, x, y and z?

I have found it advisable to discuss this point in such detail because here more than in any other single place the competing essayists betray uncertainty of thought and sloppiness of expression. It doesn’t amount to much to talk about the invariance of natural laws and their persistence as we pass from one coordinate system to another, unless we are fairly well fortified with respect to just what we mean by invariance and by natural law. We don’t expect the velocity of a train to be 60 miles per hour alike when we measure it with respect to a signal tower along the line and with respect to a moving train on the other track. We don’t expect the angular displacement of Mars to change as rapidly when he is on the other side of the sun as when he is on our side. But we do, I think, rather expect that in any phenomenon which we may observe, we shall find a natural law of some sort which is dependent for its validity neither upon the units we employ, nor the place from which we make our measurements, nor anything else external to the phenomenon itself. We shall see, later, whether this expectation is justified, or whether it will have to be discarded in the final unravelling of the absolutist from the relativistic philosophy which, with Einstein, we are to undertake.]*

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page