An Introductory Discussion of the Philosophy of Relativity, and of the Mechanism of Our Contact with Time and Space From a time beyond the dawn of history, mankind has been seeking to explain the universe. At first the effort did not concern itself further probably than to make a supposition as to what were the causes of the various phenomena presented to the senses. As knowledge increased, first by observation and later by experiment also, the ideas as to these causes passed progressively through three stages—the theological (the causes were thought to be spirits or gods); the metaphysical (the causes were thought in this secondary or intermediate stage to be some inherent, animating, energizing principles); and the scientific (the causes were finally thought of as simply mechanical, chemical, and magneto-electrical attractions and repulsions, qualities or characteristics of matter itself, or of the thing of which matter is itself composed.) With increase of knowledge, and along with the inquiry as to the nature of causes, there arose an inquiry also as to what reality was. What was the essential nature of the stuff of which the universe was made, what was matter, what were things in themselves, what were the noumena (the realities), [The general direction taken by this inquiry has been that of a conflict between two schools of thought which we may characterize as those of absolutism and of relativism.]* [The ancient Greek philosophers believed that they could tap a source of knowledge pure and absolute by sitting down in a chair and reasoning about the nature of time and space, and the mechanism of the physical world.]221 [They maintained that the mind holds in its own right certain concepts than which nothing is more fundamental. They considered it proper to conceive of time and space and matter and the other things presented to their senses by the world as having a real existence in the mind, regardless of whether any external reality could be identified with the concept as ultimately put forth. They could even dispute with significance the qualities which were to be ascribed to this abstract conceptual time and space and matter. All this was done without reference to the external reality, often in defiance of that reality. The mind could picture the world as it ought to be; if the recalcitrant facts refused to fit into the picture, so much the worse for them. We all have heard the tale of how generation after generation of Greek philosophers disputed learnedly why and how it was [Under this system a single observer is competent to examine a single phenomenon, and to write down the absolute law of nature by referring the results to his innate ideas of absolute qualities and states. The root of the word absolute signifies “taking away,” and in its philosophical sense the word implies the ability of the mind to subtract away the properties or qualities from things, and to consider these abstract qualities detached from the things; for example, to take away the coldness from ice, and to consider pure or abstract coldness apart from anything that is cold; or to take away motion from a moving body, and to consider pure motion apart from anything that moves. This assumed power is based upon the Socratic theory of innate ideas. According to this theory the mind is endowed by nature with the absolute ideas of hardness, coldness, roundness, equality, motion, and all other absolute qualities and states, and so does not have to learn them. Thus a Socratic philosopher could discuss pure or absolute being, absolute space and absolute time.]121 Getting Away from the Greek Ideas[This Greek mode of thought persisted into the Let me illustrate the difference between the two viewpoints which I have discussed, and the third one which I am about to outline, by another concrete instance. The Greeks, and the medievals as well, were Relativism and RealityThis is the viewpoint of relativism. The statue is golden for one observer and silver to the other. The sun is rising here and setting in another part of the world. It is raining here and clear in Chicago. The This brings it about that the observed fact occupies a position of unexpected significance. For when we discuss matters of physical science under a strictly relativistic philosophy, we must put away as metaphysical everything that smacks of a “reality” partly concealed behind our observations. We must focus attention upon the reports of our senses and of the instruments that supplement them. These observations, which join our perceptions to their external objects, afford us our only objective manifestations; them we must accept as final—subject always to such [We are after all accustomed to this viewpoint; we do not demand that Pittsburgh shall present the same distance from New York and from Philadelphia, or that the New Yorker and the Philadelphian come to any agreement as to the “real” distance of Pittsburgh. The distance of Pittsburgh depends upon the position of the observer. Nor do we demand that the man who locates the magnetic pole in one spot in 1900 and in another in 1921 come to a decision as to where it “really” is; we accept his statement that its position depends upon the time of the observation. What this really means is that the distance to Pittsburgh and the position of the magnetic pole are joint properties of the observer and the observed—relations between them, as we might put it. This is obvious enough in the case of the distance of Pittsburgh; it is hardly so obvious in the case of the I do not wish to speak too definitely of the Einstein theories in these introductory remarks, and so shall refrain from mentioning explicitly in this place the situation which they bring up and upon which what I have just said has direct bearing. It will be recognized when it arises. What must be pointed out here, however, is that we are putting the thing which the scientist calls the “observed value” on a footing of vastly greater consequence than we should have been willing offhand to concede to it. So far as any single observer is concerned, his own best observed values are themselves the external world; he cannot properly go behind the conditions surrounding his observations and speak of a real external world beyond these observations. Any world which he may think of as so existing is purely a conceptual world, one which for some reason he infers to exist behind the deceptive observations. Provided he makes this reservation he is quite privileged to speculate about this concealed world, to bestow upon it any characteristics that he pleases; but it can have no real existence for him until he becomes able to observe it. The only reality he knows is the one he can directly observe. Laws of NatureThe observations which we have been discussing, [Much confusion exists because of a misunderstanding in the lay mind of what is meant by a “law of nature.” It is perhaps not a well chosen term. One is accustomed to associate the word law with the idea of necessity or compulsion. In the realm of nature the term carries no such meaning. The laws of nature are man’s imperfect attempts to explain natural phenomena; they are not inherent in matter and the universe, not an iron bar of necessity running through worlds, systems and suns. Laws of nature are little more than working hypotheses, subject to change or alteration or enlargement or even abandonment, as man’s vision widens and deepens. No sanctity attaches to them, and if any one, or all, of them fail to account for any part, or all, of the phenomena of the universe, then it or they must be supplemented or abandoned.]102 [The test of one of these laws is that it can be shown to include all the related phenomena hitherto known and that it enables us to predict new phenomena which can then be verified. If new facts are discovered that are not in agreement with one of [Always, however, we must guard against the too easy error of attributing to these rules anything like absolute truth.]* [The modern scientist has attained a very business-like point of view toward his “laws of nature.” To him a law is fundamentally nothing but a short-hand way of expressing the results of a large number of experiments in a single statement. And it is important to remember that this mere shortening of the description of a lot of diverse occurrences is by no means any real explanation of how and why they happened. In other words, the aim of science is not ultimately to explain but only to discover the relations that hold good among physical quantities and to embody all these relations in as few and as simple physical laws as possible.]221 [This is Concepts and Realities[From the inquiry and criticism which have gone on for centuries has emerged the following present-day attitude of mind toward the sum total of our knowledge. The conceptual universe in our minds in some mysterious way parallels the real universe, but is totally unlike it. Our conceptions (ideas) of matter, molecules, atoms, corpuscles, electrons, the ether, motion, force, energy, space, and time stand in the same or similar relation to reality as the x’s and y’s But while our conceptual universe has thus a mechanical aspect, we do not regard the real universe as mechanical in its nature.]283 [This may be illustrated by a little story. Entering his friend’s house, a gentleman is seized unawares from behind. He turns his head but sees nothing. His hat and coat are removed and deposited in their proper places by some invisible agent, seats and tables and refreshments appear in due time where they are required, all without any apparent cause. The visitor shivers with horror and asks his host for an explanation. He is then told that the ideas “order” and “regularity” [As a matter of fact, we realize this and do not allow ourselves to be imposed upon with regard to the true nature of these agencies.]* [We use a mechanistic terminology and a mechanistic mode of reasoning only because we have found by experience that they facilitate our reasoning. They are the tools which we find produce results. They are adapted to our minds, but perhaps it would be better to say that our minds are so constructed as to render our conceptual universe necessarily mechanical in its aspect in order that our minds may reason at all. Two things antithetic are involved—subject (our perceiving mind which builds up concepts) and object (the external reality); and having neither complete nor absolute knowledge of either, we cannot affirm which is more truly to be said to be mechanistic in its nature, though we may suspect that really neither is. We no longer think of cause and The so-called laws of nature are simply statements of formulÆ which resume or sum up the relationships and sequences of phenomena. Our effort is constantly to find formulÆ which will describe the widest possible range of phenomena. As our knowledge increases, that is, as we perceive new phenomena, our laws or formulÆ break down, that is, they fail to afford a description in brief terms of all of our perceptions. It is not that the old laws are untrue, but simply that they are not comprehensive enough to include all of our perceptions. The old laws are often particular or limiting instances of the new laws.]283 [From what we have said of the reality of observations it follows that we must support that school of psychology, and the parallel school of philosophy, which hold that concepts originate in perceptions. But this does not impose so strong a restriction upon conceptions as might appear. The elements of all our concepts do come to us from outside; we manufacture nothing out of whole cloth. But when perception has supplied a sufficient volume of raw material, we may group its elements in ways foreign to actual occurrence in the perceptual world, and in so doing get The Concepts of Space and TimeWhen we have formed the abstract ideas of coldness and warmth, and have had experience indicating that the occurrence of these properties varies in degree, we are in a position to form the secondary abstract notion covered by the word “temperature.” When we have formed the abstract ideas of size and position and separation, we are similarly in a position to form a secondary abstraction to which we give the name “space.” Not quite so easy to trace to its definite source but none the less clearly an abstraction based on experience, is our idea of what we call “time.” None of us are deceived as to the reality of these abstractions.]* [We do not regard space as real in the sense that we regard a chair as real; it is merely an abstract idea convenient for the location of material objects like the chair.]198 [Nor do we regard time as real in this sense. Things occupy space, events occupy time; space and time themselves we realize are immaterial and unreal; Space and time, then, are concepts.]* [It is not strange, however, that when confronted with the vast and bewildering complexity of the universe and the difficulty of keeping separate and distinct in our minds our perceptions and conceptions, we should at times and as respects certain things project our conceptions illegitimately into the perpetual universe and mistake them for perceptions. The most notable example perhaps of this projection has occurred in the very case of space and time, most fundamental of all of our concepts. We got to think of these as absolute, as independent of each other and of all other things, and as always existing and continuing to exist whether or not we or anything else existed—space as a three-dimensional, uniform continuum, having the same properties in all directions; time as a one-dimensional, irreversible continuum, flowing in one direction. It is difficult to get back to the idea that space and time so described and defined are concepts merely, for the idea of their absolute existence is ingrained in us as the result probably of long ancestral experience.]283 [Newton’s definitions of course represent the classical idea of time and space. He tells us that “absolute, true and mathematical time flows in virtue of its own nature, uniformly and without reference If space and time are to be the vessels of our universe, and if the only thing that really matters is measured results, it is plain enough that we must have, from the very beginning, means of measuring space and time. Whether we believe space and time to have real existence or not, it is obvious that we can measure neither directly. We shall have to measure space by measuring from one material object to another; we shall have to measure time by some similar convention based on events. We shall later have something further to say about the measurement of time; for the present we need only point out that]* [Newtonian time is measured independently of space; and the existence is presupposed of a suitable timekeeper.]10 [The space of Galileo and Newton was conceived of as empty, except in so far as certain parts of it were occupied by matter. Positions of bodies in this space were in general determined by reference to]283 [a “coordinate system” of some kind. This is again something that demands a certain amount of discussion. The Reference Frame for SpaceThe mathematician, following the lead of the great French all-around genius, Descartes, shows us very clearly how to set up, for the measurement of space, the framework known as the Cartesian coordinate system. The person of most ordinary mathematical attainments will realize that to locate a point in a plane we must have two measurements; and we could probably show this person, without too serious difficulty, that we can locate a point in any surface by two measurements. An example of this is the location of points on the earth’s surface by means of their latitude and longitude. It is equally clear that if we add a third dimension and attempt to locate points in space, we must add a third measurement. In the case of points on the earth’s surface, this might be the elevation above sea level, which would define the point not as part of the spherical surface of the earth but as part of the solid sphere. Or we may fall back on Dr. Slosson’s suggestion that in order to define completely the position of his laboratory, we must make a statement about Broadway, and one about 116th Street, and one telling how many flights of stairs there are to climb. In any event, it should be clear enough that the complete definition of a point in space calls for three measurements. The mathematician formulates all this with the utmost precision. He asks us to]* [pick out any point whatever in space and call it O. We then draw or conceive to be drawn through this point three mutually perpendicular lines called coordinate axes, [To the layman there seems something altogether naive in this notion of the scientist’s setting up the three sides of a box in space and using them as the basis of all his work. The layman somehow feels that while it is perfectly all right for him to tell us that he lives at 1065 (one coordinate) 156th Street (two coordinates) on the third floor (three coordinates), it is rather trivial business for the serious-minded The scientist, however, is not interested in points of empty space. The point is to him merely part again of the conceptual machinery which he uses in his effort to run along with the external world. He knows there are no real points, but it suits his convenience to keep track of certain things that are real by representing them as points. But these things are in practically every instance material bodies; and in practically every instance, instead of staying put in one spot, they insist upon moving about through space. The scientist has to use his coordinate system, not merely to define a single position of such a “point,” but to keep track of the path over which it moves and to define its position in that path at given moments. Time and the Coordinate SystemThis introduces the concept of time into intimate relationship with the spatial coordinate system. When we come to the more general case of a point moving freely through space, we have but three coordinates at our disposal; there is not a fourth one The set of coordinate axes in space, together with the zero point from which we measure time, constitute what we call a frame of reference. If we are not going to pay any attention to time, we can think of the space coordinate system alone as constituting our reference frame. This expression appears freely throughout the subsequent text, and always with one or the other of these interpretations. We see, then, how we can keep track of a moving point by keeping track of the successive positions which it occupies in our reference frame.]* [Now we have implied that these coordinate axes are fixed The Choice of a Coordinate FrameAll this emphasizes the fact that our coordinate axes are not picked out for us in advance by nature, and set down in some one particular spot. We select them for ourselves, and we select them in the most convenient way. But different observers, or perhaps the same observer studying different problems, will find it advantageous to utilize different coordinate systems.]* [The astronomer has found it possible, and highly convenient, to select a coordinate frame such that the great majority of the stars have, on [In this connection a vital question suggests itself. Is the expression of natural law independent of or dependent upon the choice of a system of coordinates? And to what extent shall we be able to reconcile the results of one observer using one reference frame, and a second observer using a different one? The answer to the second question is obvious.]* [True, if any series of events is described using two different sets of axes, the descriptions will be different, depending upon the time system adopted and the relative motion of the axes. But if the connection between the reference systems is known, it is possible by mathematical processes to deduce the quantities observed in one system if those observed in the other are known.]35 [This process of translating the results of one observer into those of another is known as a transformation; and the mathematical statement of the rule governing the transformation is called the equation or the equations (there are usually several of them) of the transformation.]* [Transformations of this character constitute [When we inquire about the invariance of natural law it is necessary to be rather sure of just what we mean by this expression. The statement that a given body is moving with a velocity of 75 miles per hour is of course not a natural law; it is a mere numerical observation. But aside from such numerical results, we have a large number of mathematical relations which give us a more or less general statement of the relations that exist between velocities, accelerations, masses, forces, times, lengths, temperatures, pressures, etc., etc. There are some of these which we would be prepared to state at once as universally valid—distance travelled equals velocity multiplied by time, for instance. We do not believe that any conceivable change of reference systems could bring about a condition in which the product of velocity and time, as measured from a certain framework, would fail to equal distance as measured from this same framework. There are other relations more or less of the same sort which we probably believe to be in the same invariant category; there are others, perhaps, of which we might be doubtful; and presumably there are still others which we should suspect of restricted validity, holding in certain reference systems only and not in others. The question of invariance of natural law, then, may turn out to be one which may be answered in the large by a single statement; it may equally turn out to be one that has to be answered in the small, by considering particular laws in connection with particular transformations between particular reference systems. Or, perhaps, we may find ourselves justified Observer A, using the reference system R, measures certain quantities t, w, x, y, z. Observer B, using the reference system S, measures the same items and gets the values t', w', x', y', z'. The appropriate transformation equations for calculating the one set of values from the other is found. If a mathematical relation of any sort is found to exist between the values t, w, x, y, z, will the same relation exist between the values t', w', x', y', z'? If it does not, are we justified in still calling it a law of nature? And if it does not, and we refrain from calling it such a law, may we expect in every case to find some relation that will be invariant under the transformation, and that may therefore be recognized as the natural law connecting t, w, x, y and z? I have found it advisable to discuss this point in such detail because here more than in any other single place the competing essayists betray uncertainty of thought and sloppiness of expression. It doesn’t amount to much to talk about the invariance of natural laws and their persistence as we pass from one coordinate system to another, unless we are fairly well fortified with respect to just what we mean by invariance and by natural law. We don’t expect the velocity of a train to be 60 miles per hour alike when we measure it with respect to a signal tower along the line and with respect to a moving train on the other track. We don’t expect the |