THE PRINCIPLE OF RELATIVITY

Previous

A Statement of What it is All About, in Ideas of One Syllable

The invariance of the laws of nature was one of the most popular themes of nineteenth century philosophy. For it was not till last century that general acceptance was accorded to the doctrine of the “Uniformity of Law,” adumbrated in ancient times by Epicurus and Lucretius. It is now a cardinal axiom of science that the same cause in the same conditions is always followed by the same effect. There exists in nature no indeterminate element; all things are governed by fixed laws, and the discovery of these laws is the main business of science.

It is necessary to guard against reading into this statement an erroneous idea of the content of a “law of nature.” Such a law is of course not an enactment of any sort; and it is not even to be thought of as an actual explanation of the how and why of the phenomena with which it has to do. It really is nothing but an expression of our belief in the pronouncement of the preceding paragraph, that like conditions do produce like results. It is a prediction based on past experience, and is of value merely in that past experience leads us to credit its accuracy. The composite essay beginning on page 19 discusses this question of the reality of natural laws, and should be consulted in connection with the present contribution.—Editor.

This great philosophic principle was derived of course from the study of natural science; i.e., from observations and experiments conducted upon the earth. Their comprehensiveness is therefore limited by the fact that the observer is always in a state of rest, or nearly so, as compared with the earth. All observers upon the earth are moving through space at the same velocity; and it was possible to argue that the uniformity of law might only hold good, when experiments were conducted at this velocity. An observer moving at very different velocity might discover that the laws of nature under these new conditions were somewhat different.

Such a view could indeed never be very plausible, for motion is only a relative conception. Imagine a universe consisting of infinite “empty” space, in which there is poised a single material body. How shall we determine whether this body is at rest, or whether it is moving at high or low velocity through space? It is never getting nearer to anything or farther from anything, since there is no other body for it to get nearer to or farther from. If we say it is moving at a uniform velocity of a thousand miles a second, our statement really has no significance. We have no more reason for affirming that it is in motion than we have for affirming that it is at rest. In short, there is no such thing as absolute motion; the conception of motion only arises when there are two or more bodies changing their position relatively to one another. This is what is meant by the relativity of motion. It seemed therefore improbable that the laws of nature would be different if the observer were moving at high velocity; for the movement of the observer is not an absolute quantity, but merely a statement of his relation to other bodies, and if there were no other bodies, the statement itself would be meaningless.

The Behavior of Light

Now among the established laws of nature is that which specifies the velocity of light moving through a vacuum. If the laws of nature are invariable, this velocity will always be the same. But consider what would happen under the following circumstances: Suppose that we are at rest, and that an observer on another body flies past us at 150,000 miles a second. Suppose that at the moment he passes, a piece of flint projecting from him grazes a piece of steel projecting from us, giving rise to a spark; and that we both thereupon set about to measure the velocity of the light so produced. After one second, we should find that the light had traveled about 186,000 miles away, and since during this second the other observer had traveled 150,000 miles, we should infer that the light traveling in his direction was only about 36,000 miles ahead of him. We should also infer that he would find this out by his experiment, and that he would estimate the velocity of light as only 36,000 miles a second in his own direction, and 336,000 miles a second in the opposite direction. But if this is so, then that law of nature which specifies the velocity of light is quite different for him and for us: the laws of nature must be dependent upon the observer’s motion—a conclusion which appears incompatible with the idea of the relativity of motion.

And it so happens that it is also contradictory to experimental conclusions. Experiments undertaken to settle the point show that each observer finds the same velocity for the light of the spark; and after one second, each observer finds that the light has traveled 186,000 miles from himself. But how is it possible that when it has traveled 186,000 miles in the same direction as the other observer who himself has moved 150,000 miles meanwhile, he should still think it 186,000 miles ahead of him? That is the initial paradox; and since there has been no room for error in the experiments, we are forced to conclude that there was something wrong in the assumptions and preconceptions with which we started.

Space and Time

There can in fact be only one interpretation. If we each find that the light has moved the same number of miles in the same number of seconds, then we must be meaning something different when we speak of miles and seconds. We are speaking in different languages. Some subsidence has occurred in the foundations of our systems of measurement. We are each referring to one and the same objective fact; but since we describe it quite differently, and at first sight incompatibly, some profound alteration must have occurred in our perceptions—all unsuspected by ourselves. It has been shown precisely what this alteration is. A body moving at high velocity must become flattened in the direction of its motion; all its measuring apparatus, when turned in that direction, is shortened, so that no hint of the flattening can be obtained from it. Furthermore, the standards of time are lengthened out, and clocks go slower. The extent of this alteration in standards of space and time is stated in the equations of the so-called Lorentz transformation.

Objection might be urged to the above paragraph on the ground that the connection of the observer with the variability of measured lengths and times is not sufficiently indicated, and that this variability therefore might be taken as an intrinsic property of the observed body—which of course it is not.—Editor.

We are accustomed to describe space as being of three dimensions, and time as being of one dimension. As a matter of fact, both space and time are “ideas,” and not immediate sense-perceptions. We perceive matter; we then infer a universal continuum filled by it, which we call space. If we had no knowledge of matter, we should have no conception of space. Similarly in the case of time: we perceive one event following another, and we then invent a continuum which we call time, as an abstraction based on the sequence of events. We do not see space, and we do not see time. They are not real things, in the sense that matter is real, and that events are real. They are products of imagination: useful enough in common life, but misleading when we try to look on the universe as a whole, free from the artificial divisions and landmarks which we introduce into it for practical convenience. Hence it is perhaps not so surprising after all that in certain highly transcendental investigations, these artificial divisions should cease to be a convenience, and become a hindrance.

Take for instance our conception of time. It differs from our conception of space in that it has only one dimension. In space, there is a right and left, an up and down, a before and after. But in time there is only before and after. Why should there be this limitation of the time-factor? Merely because that is the verdict of all our human experience. But is our human experience based on a sufficiently broad foundation to enable us to say that, under all conditions and in all parts of the universe, there can be only one time-direction? May not our belief in the uniformity of time be due to the uniformity of the motion of all observers on the earth? Such in fact is the postulate of relativity. We now believe that, at velocities very different from our own, the standard of time would also be different from ours. From our point of view, that different standard of time would not be confined to the single direction fore and aft, as we know it, but would also have in it an element of what we might call right and left. True, it would still be of only one dimension, but its direction would differ from the direction of our time. It would still run like a thread through the universe, but not in the direction which we call straight forward. It would have a slant in it, and the angle of the slant depends upon the velocity of motion. It does not follow that because we are all traveling in the same direction down the stream of time, therefore that stream can only flow in the direction which we know. “Before” and “after” are expressions which, like right and left, depend upon our personal situation. If we were differently situated, if to be precise we were moving at very high velocity, we should, so to speak, be facing in a new direction and “before” and “after” would imply a different direction of progress from that with which we are now familiar.

The World of Reality

But, after all, the objective universe is the same old universe however fast we are moving about in it, and whatever way we are facing. These details merely determine the way we divide it up into space and time. The universe is not affected by any arbitrary lines which we draw through it for our personal convenience. For practical purposes, we ascribe to it four dimensions, three in space and one in time. Clearly if the time direction is altered, all dimensions both of space and time must have different readings. If, for instance, the time direction slopes away to the left, as compared with ours, then space measurements to right and left must be correspondingly altered. An analogy will simplify the matter.

Suppose we desire to reach a point ten miles off in a roughly northeasterly direction. We might do so by walking six miles due east and then eight miles due north. We should then be precisely ten miles from where we started. But suppose our compass were out of order, so that its north pole pointed somewhat to the west of north. Then in order to get to our destination, we might have to walk seven miles in the direction which we thought was east, and a little more than seven miles in the direction which we thought was north. We should then reach the same point as before. Both observers have walked according to their lights, first due east and then due north, and both have reached the same point: the one observer is certain that the finishing point is six miles east of the starting-point, while the other is sure it is seven miles.

Now we on the earth are all using a compass which points in the same direction as regards time. But other observers, on bodies moving with very different velocity, have a compass in which the time-direction is displaced as compared with ours. Hence our judgments of distances will not be alike. In our analogy, the northerly direction corresponds to time, and the easterly direction to space; and so long as we use the same compass we do not differ in our measurements of distances. But for any one who has a different notion of the time-direction, not only time intervals but space distances will be judged differently.

In short, the universe is regarded as a space-time continuum of four dimensions. A “point” in space-time is called an “event”—that which occurs at a specified moment and at a specified place. The distance between two points in space-time is called their “interval.” All observers will agree as to the magnitude of any interval, since it is a property of the objective universe; but they will disagree as to its composition in space and time separately. In short, space and time are relative conceptions; their relativity is a necessary consequence of the relativity of motion. The paradox named at the outset is overcome; for the two observers measuring the velocity of the light produced as they passed one another, were using different units of space and time. And hence emerges triumphant the Special Principle of Relativity, which states that the laws of nature are the same for all observers, whether they are in a state of rest or of uniform motion in a straight line.

Accelerated Motion

Uniform motion in a straight line is however a very special kind of motion. Our experience in ordinary life is of motions that are neither uniform nor in a straight line; both speed and direction of motion are altering. The moving body is then said to undergo “acceleration”: which means either that its speed is increasing or diminishing, or that its direction of motion is changing, or both. If we revert to our former supposition of a universe in which there is only a single body in “empty” space, we clearly cannot say whether it has acceleration any more than whether it is moving, there being no outside standard of comparison; and the General Principle of Relativity asserts the invariance of the laws of nature for all states of motion of the observer. In this case, however, a difference might be detected by an observer on the moving body itself. It would be manifested to him as the action of a force; such for instance as we feel when a train in which we are traveling is increasing or reducing speed, or when, without changing speed, it is rounding a corner. The force dies away as soon as the velocity becomes uniform. Thus acceleration reveals itself to us under the guise of action by a force. Force and acceleration go together, and we may either say that the acceleration is due to the force, or the impression of force to the acceleration.

Now when we are traveling with accelerated motion, we have quite a different idea of what constitutes a straight line from that which we had when at rest or in uniform motion. If we are moving at uniform velocity in an airplane and drop a stone to the earth it will appear to us in the airplane to fall in a straight line downward, while to an observer on the earth it will appear to describe a parabola. This is due to the fact that the stone gathers speed as it falls; it is subject to the acceleration associated with gravity. Acceleration obliterates the fundamental difference between a straight and curved line. Unless we know what is the absolute motion of the stone, and the two observers, we cannot say whether the line is “really” a straight or a curved line. Since absolute motion is an illegitimate conception, it follows that there is no such thing as “really” straight or “really” curved. These are only appearances set up as a consequence of our relative motions with respect to the bodies concerned. If there were no such thing as acceleration—if the stone fell to the earth at uniform velocity—then an observer on the earth or anywhere else would agree that it fell in a straight line; and straight lines would always be straight lines.

Under these circumstances, Euclidean geometry would be absolutely true. But if we are in a state of acceleration, then what we think are straight lines are “really” curved lines, and Euclidean geometry, based on the assumption that its lines are straight, must founder when tested by more accurate measurements. And in point of fact we are in a state of acceleration: for we are being acted upon by a force—namely, the force of gravitation. Wherever there is matter, there is gravitation; wherever there is gravitation there is acceleration; wherever there is acceleration Euclidean geometry is inaccurate. Hence in the space surrounding matter a different geometry holds the field; and bodies in general move through such space in curved lines.

Different parts of space are thus characterized by different geometrical properties. All bodies in the universe proceed on their established courses through space and time. But when they come to distorted geometrical areas, their paths naturally seem to us different from when they were moving through less disturbed regions. They exhibit the difference by acquiring an acceleration; and we explain the acceleration by alleging the existence of a force, which we call the force of gravitation. But their motions can in fact be perfectly predicted if we know the geometry of the space through which they are traveling. The predictions so based have in fact proved more accurate than those based on the law of gravitation.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page