FORCE VS. GEOMETRY

Previous

How Einstein Has Substituted the Second for the First in Connection With the Cause of Gravitation

The theory of relativity represents a most strikingly original conception of time and space, which was suggested by Einstein in order to correlate with all our past experience certain observations made in recent years. It is therefore extremely comprehensive in its scope; it demands from us a radical revision in our notions of time and space; it throws new light on the nature of mass and energy, and finally, it furnishes a totally new conception of the old problem of gravitation.

The starting point of the theory is the familiar observation that motion is always relative: that is, to define the motion of any object we must always use some point of reference. Thus we speak of the velocity of a train as 40 miles per hour with respect to the earth’s surface, but would find it impossible to determine its absolute speed, or motion in space, since we know of no star whose position can be spoken of as absolutely fixed. These and similar considerations have led to the conclusion, pointed out by Newton and others, that it is impossible by any mechanical experiments on the earth to measure its velocity in space.

However, the results of observations on the phenomena of light and electricity led to the revival of the same problem under another form. As well known, there was evolved from these discoveries, the theory that light and electrical energy are of the same nature, and are in each case manifestations of wave-disturbances propagated through a hypothetical medium, the ether, with a velocity of 186,000 miles per second.

The problem therefore arose as to whether the earth and all stellar bodies move through this ether. In that case it ought to be possible to measure the velocity of the earth with respect to this medium, and under these conditions we could speak, in a sense, of absolute motion.

A large number of experiments has been tried with this end in view. The most famous of these, and the one which stimulated the subsequent development of the theory of relativity, was that carried out by Michelson and Morley in 1887. To understand the significance of this experiment we shall refer briefly to an analogous observation which is quite familiar.

Does it take longer to swim to a point 1 mile up a stream and back or to a point 1 mile across stream and back? The experienced swimmer will answer that the up-and-down journey takes longer. If we assume that the swimmer has a speed of 5 miles an hour in still water and that the current is 3 miles an hour, we find that, while it requires five-eighths hour to make the up-and-down journey, it takes only one-half hour for the trip across stream and back. The ratio between the times required for the two journeys is thus five-fourths, and if this is written in the form StartFraction 1 Over StartRoot 1 minus left-parenthesis three-fifths right-parenthesis squared EndRoot EndFraction it shows how the result depends upon the square of the ratio of the speeds of the swimmer and the current.

Now the earth is moving in its orbit about the sun with a velocity of 18 miles per second. If the earth moves through the ether and a light-beam passes from one mirror to another and back again, the time taken for this journey ought to be longer when the light-path is in the direction of the earth’s motion than when it is at right angles to this direction. For we can consider the light as a swimmer having a speed of 186,000 miles per second and travelling in a stream whose current is 18 miles per second.

When Michelson and Morley tried the experiment they could not observe any difference in the velocity of light in the two directions. The experiment has since been repeated under various conditions, but always with negative results.

Einstein’s contribution to science consists in interpreting this result as being in accord with Newton’s ideas on mechanical relativity in that it demonstrates the impossibility of measuring absolute motion, not only by mechanical, but also by optical or electrical experiments. Consequently the velocity of light must be regarded as constant and independent of the motion of either source or observer.

The Relativity of Uniform Motion

Let us consider some of the consequences which follow from this principle. An observer travelling with say one-half the velocity of light in the same direction as a ray of light would find that the latter has the usual velocity of 186,000 miles per second. Similarly an observer travelling in the opposite direction to that of the light-ray, with one-half the velocity of light, would obtain the same result.

Einstein has shown that these conclusions can be valid only if the units of time and space used by the two observers depend upon their relative motions. A careful calculation shows that the unit of length used by either observer appears to the other observer contracted when placed in the direction of their relative motion (but not, when placed at right angles to this direction), and the unit of time used by either observer appears to the other too great. Moreover, the ratio of the units of length or of time varies with the square of the relative speed of the two observers, according to a relation which is similar to that mentioned above for the swimmer in the current. This relation shows that as the relative speed approaches that of light the discrepancy between the units increases.

Thus, for an observer moving past our earth with a velocity which is nine-tenths that of light, a meter stick on the earth would be 44 centimeters as measured by him, while a second on our clocks would be about two and a half seconds as marked by his clock. Similarly, what he calls a meter length would, for us, be only 44 centimeters and he would appear to us to be living about two and a half times slower than we are. Each observer is perfectly consistent in his measurements of time and space as long as he confines his observations to his own system, but when he tries to make observations on another system moving past his, he finds that the results which he obtains do not agree with those obtained by the other observer.

It is not surprising that in accordance with this conclusion it also follows that the mass of a body must increase with its velocity. For low velocities the increase is so small that we cannot ever hope to measure it, but as the velocity of light is approached the difference becomes more and more appreciable and a body having the velocity of light would possess infinite mass, which simply means that such a velocity cannot be attained by any material object. This conclusion has been experimentally confirmed by observations on the mass of the extremely small negatively charged particles which are emitted by radioactive elements. Some of these particles are ejected with velocities which are over nine-tenths that of light, and measurements show that the increase in mass is in accord with this theory.

The relativity theory also throws new light on the nature of mass itself. According to this view, mass and energy are equivalent. The absolute destruction of 1 gram of any substance, if possible, would yield an amount of energy which is one hundred million times as much as that obtained by burning the same mass of coal. Conversely, energy changes are accompanied by changes in mass. The latter are ordinarily so inappreciably small as to escape our most refined methods of measurements, but in the case of the radioactive elements we actually observe this phenomenon. From this standpoint, also, the laws of conservation of energy and of mass are shown to be intimately related.

Universal Relativity

So far we have dealt with what has been designated as the special theory of relativity. This, as we have seen, applies to uniform motion only. In extending the theory to include non-uniform or accelerated motion, Einstein has at the same time deduced a law of gravitation which is much more general than that of Newton.

A body falling towards the earth increases in velocity as it falls. The motion is said to be accelerated. We ascribe this increase in velocity to a gravitational force exerted by the earth on all objects. As shown by Newton, this force acts between all particles of matter in the universe, and varies inversely as the square of the distance, and directly as the product of the masses.

Of course, we have had a number of theories of gravitation, and none of them have proven successful. Einstein, however, was the first one to suggest a conception of gravitation which has proven extremely significant. He points out that a gravitational force is non-existent for a person falling freely with the acceleration due to gravity. For this person there is no sensation of weight, and if he were in a closed box which is also falling with the same acceleration, he would be unable to decide as to whether his system were falling or situated in interplanetary space where there is no gravitational field. Furthermore, if he were to carry out any optical or electrical experiments in this box he would observe the same results as an experimenter on the earth. A ray of light would travel in a straight line so far as this observer can perceive, while an external observer would, of course, judge differently.

Einstein shows that this is equally true for all kinds of acceleration including that due to rotation. In the case of a rotating body there exists a centrifugal force which tends to make objects on the surface fly outwards, but for an external observer this force does not exist any more than gravity exists for the observer falling freely.

Thus we can draw the general conclusion that a gravitational field or any other field of force may be eliminated by choosing an observer moving with the proper acceleration. For this observer, however, the laws of optics and electricity must be just as valid as for an observer on the earth.

In postulating this equivalence hypothesis Einstein merely makes use of the very familiar observation that, independently of the nature of the material, all bodies possess the same acceleration in a given field of force.

The problem which Einstein now sets out to solve is that of determining the law which shall describe the motion of any system in a field of force in such a general manner as to leave unaltered the fundamental relations of electricity and optics.

In connection with the solution of this problem he finds it necessary to discard the limitations placed on us by ordinary or Euclidean geometry. In this manner geometrical concepts as well as those of force are completely robbed of all notions of absoluteness, and the goal of a general theory of relativity is attained.

The Geometry of Gravitation

Let us consider a circular disc rotating with a uniform peripheral speed. According to the deductions from the “special theory” of relativity, an observer situated near the edge of this disc, but not rotating with it, will observe that units of length measured along the circumference of the disc are contracted. On the other hand, measurements along the diameter, which is at right angles to the direction of motion of the circumference, will show no contraction whatever, and, consequently the observer will find that the ratio of circumference to diameter has not the well known value 3.14159 … but exceeds this value, the difference being greater and greater as the peripheral speed approaches that of light. That is, the laws of ordinary geometry no longer hold true.

However, we know other cases in which the ordinary or Euclidean geometry is not applicable. Thus suppose that on the surface of a sphere we describe a series of concentric circles. Since the surface is curved, we are not surprised at finding that the circumference of any one of these circles is less than 3.14159 … times the distance across the circle as measured on the surface of the sphere. What this means, therefore, is that we cannot use Euclidean geometry to describe measurements on the surface of a sphere, and every schoolboy knows this from comparing Mercator’s projection of the earth’s surface with the actual representation on a globe.

When we come to think of it, the reason we realize all this is because our sense of three dimensions enables us to differentiate flat surfaces from those that are curved. Let us, however, imagine a two-dimensional being living on the surface of a large sphere. So long as his measurements are confined to relatively small areas he will find it possible to describe all his measurements in terms of Euclidean geometry. As, however, his area of operation increases he will begin to observe greater and greater discrepancies. Being unfamiliar with the existence of such a three-dimensional object as a sphere, and therefore not realizing that he is on the surface of one, our intelligent two-dimensional being will conclude that the disturbance in his geometry is due to the action of a force, and by means of plausible assumptions on the “law” of this force he will reconcile his observations with the laws of plane geometry.

Now since an acceleration in a gravitational field is identical with that due to centrifugal force produced by rotation, we concluded that the geometry in a gravitational field must also be non-Euclidean. That is, space in the neighborhood of matter is distorted or curved. The curvature of space bears the same relation to three dimensions that the curvature of a spherical surface bears to two dimensions, and that is why we do not perceive it, any more than the intelligent two-dimensional being would be aware of the distortion of his space (or surface). Furthermore, like this being, we have assumed the existence of a gravitational force to account for discrepancies in our geometrical measurements.

The identification in this manner of gravitational effects with geometrical curvature of space enables Einstein to derive a general law for the path of any particle in a gravitational field, with respect both to space and to time. Furthermore, the law expresses this motion in terms which are independent of the relative motion and position of the observer, and satisfies the condition that the fundamental laws of physics be equally valid for all observers. The solution of the problem involved the use of a new kind of higher calculus, elaborated by two Italian mathematicians, Ricci and Levi-Civita. The result is a law of motion which is extremely general in its validity.

For low velocities it approximates to Newton’s solution, and in the absence of a gravitational field it leads to the same conclusions as the special theory of relativity. There are three deductions from this law which have aroused a great deal of interest, and the confirmation of two of these by actual observation must be regarded as striking proof of Einstein’s theory.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page