Einstein’s theory of relativity seeks to represent to us the world as it really is instead of the world of appearances which may be deceiving us. When I was in town last week to buy 5 yards of calico I watched the draper very carefully as he measured the cloth to make sure I was not cheated. Yet experiment can demonstrate, and Einstein’s theory can explain, that the draper’s yardstick became longer or shorter according to the direction in which it was held. The length of the yardstick did not appear to me to change simply because everything else in the same direction, the store, the draper, the cloth, the retina of my eye, changed length in the same ratio. Einstein’s theory points out not only this, but every case where appearances are deceptive, and tries to show us the world of reality. Einstein’s theory is based on the principle of relativity and before we try to follow his reasoning we must spend a little time in understanding what he Michelson and Morley set out in their famous experiment to measure the absolute velocity of their laboratory, which was, of course, fixed on the earth. The experiment consisted of timing two rays of light over two equal tracks at right angles to each other. When one track was situated in the direction of the earth’s motion they expected to get the same result as when two scullers of equal prowess are racing in a river, one up and down the stream and the other across and back; the winner will be the The principle of relativity has its foundation in fact on these failures to detect absolute motion. This principle states that the only motion we can ever know about is relative motion. If we devise an experiment which ought to reveal absolute motion, nature will enter into a conspiracy to defeat us. In the Michelson and Morley experiment the conspiracy was that the track in the direction of the earth’s absolute motion should contract its length by just so much as would allow the ray of light along it to arrive up to time. We see, therefore, that according to the principle of relativity motion must always remain a relative term, in much the same way as vertical and horizontal, right and left, are relative terms having only meaning when referred to some observer. We do not expect to find an absolute vertical and are wise enough not to attempt it; in seeking to find absolute motion physicists were not so wise and only found themselves baffled. The principle that all motion is relative now requires to be worked out to all its consequences, as Suppose a fly is crawling over this sheet of paper and let us make a movie record of it. If we cut up the strip of movie film into the individual pictures and cement them together one above another in their proper order, we shall build up a solid block of film which will be a model of our simplified world of space-time and in which there will be a series of dots representing the motion of the fly over the paper. Just as I can state the exact position of an object in my room by defining its height above the floor, its distance from the north wall and its distance from the east wall, so we can reduce the positions of the dots to figures for use in calculations by measuring their distances from the three faces intersecting in the lines OX, OY, and OT, where can add block after block so as to keep the axes moving. We can conceive of other changes of axes. The operator making the movie record might have taken the fly for the hero of the piece and moved the camera about so as to keep the fly more or less central in the picture; or he might, by turning the handle first fast and then slow and by moving the camera, have made the fly appear to be doing stunts. Moving the camera would change the axes of x and y, and turning the handle at different speeds To use an analogy, the sculptured head of Shakespeare on my table may appear to have hollow cheeks when I admit light from the east window only, or to have sunken eyes with light from the skylight in the roof, but the true shape of the head remains the same in all lights. Hence, if with reference to two consecutive dots in our block of film a mathematical quantity can be found which will not change no matter how we changes our axes of coordinates, that quantity must be an expression of the true law of motion of the fly between the two points of the paper and the two times represented by these two dots. Einstein has worked out such a quantity remaining constant In passing we may notice a feature of Einstein’s world of space-time which we shall doubtless find it difficult to conceive, namely, that there is no essential difference between a time and a distance in space. Since one set of coordinates is as good as another, we can transform time into space and space into time according as we choose our axes. For example if we change OX, OT, the axes of x and time in Fig. 2, into OX', OT' by a simple rotation, the new time represented by OT' consists partly of OA in the old time and partly of OB in the old x direction. Referring to our block of movie film again, it means that although I might separate the block into space and time by slicing it into the original pictures, I can just as readily slice it in any direction I choose and still get individual pictures representing the motion of the fly but with, of course, new time and space. So whilst I may be believe that a liner has travelled 3,000 miles in 4 days, an observer on a star who knows nothing of my particular axes in space-time may say, with equal truth, that it went 2,000 miles in 7 days. Thus, time and space are not two separate identities in Einstein’s view; there only exists a world of four dimensions which we can split up into time and space as we choose. Let us see now how Einstein explains gravitation. When a body is not acted on by any forces (except gravitation) the quantity which remains constant for all changes of coordinates implies that the body will follow that path in the space of an outside |