COLOUR AND ITS PERCEPTION.
It was explained in the last chapter that we see things through the agency of the light—emitted or reflected—which proceeds from them to the eye, and is suitably distributed over the retina by the action of a system of lenses.
Now the “image” thus formed is not generally perceived as a simple monochromatic one, darker in some parts, lighter in others, like a black and white engraving. It is, in most cases at least, characterised by a variety of colours, the light which comes from different objects, or from different parts of the same object, having the power of exciting different colour sensations. Light which has the property of exciting the sensation of any colour is commonly spoken of as coloured light. The light reflected by a soldier’s coat, for example, may be called red light, because when it falls upon the eye it gives rise to a sensation of redness. But it must be understood that this mode of expression is only a convenient abbreviation, for there can, of course, be no objective colour in the light or “radiation” itself.
Wherein, then, does coloured light differ from white? Why do things appear to be variously coloured when illuminated by light which is colourless? And how do coloured lights affect the visual organs so as to evoke appropriate sensations? These are questions—the first two of a physical character, the last partly physiological and partly psychological—which it is now proposed to discuss.
The matter has already been touched upon, though very slightly, in connection with the spectrum. Let us again turn to the spectrum and consider it a little more fully.
It is easily seen that the luminous band contains six principal hues or tones of colour—red, orange, yellow, green, blue, and violet. (See Fig. 1, page 12.) These however merge into one another so gradually that it is impossible to say exactly where any one colour begins and ends. Look, for instance, at the somewhat narrow but very conspicuous stripe of yellow. Towards the right of this stripe the colour gradually becomes greenish-yellow; a little further on it is yellowish-green, and at length, by insensible gradations, a full, pure green is reached.
The six most prominent hues of the spectrum are, in fact, supplemented by an immense multitude of subordinate ones, the total number which the eye can recognise as distinct being not less than a thousand. All the colours that we see in nature, with the exception of the purples (about which I shall say more presently), are here represented, and every single variety of tone in the prismatic scale corresponds with one, and only one, definite wave-length of light.
The source of all these colours is, as we know, a beam of white or colourless light, the constituents of which have been sorted out and arranged so that they fall side by side upon the screen in the order of their several wave-lengths. If, then, these coloured constituents were all mixed together again, it would be reasonable to expect that pure white light would be reproduced.
The experiment has been performed in a great many different ways, several of which were devised by Newton himself, and the result admits of no doubt whatever. The method which I intend to describe is not quite so simple as some others, but it has great advantages in the way of convenient manipulation, and affords the means of demonstrating a number of interesting colour effects in an easily intelligible manner. By the simple operation of moving aside a lens out of the track of the light, we can gather up and thoroughly mix together all the variously coloured rays of the spectrum and cause them to form upon the screen a bright circular patch, which, though due to a mixture of a thousand different hues, is absolutely white. When the lens is replaced, which is done in an instant, the mixture is again analysed into its component parts, and the spectrum reappears.
The arrangement of the apparatus, which is essentially the same as that devised by Captain Abney, and called by him the “colour-patch apparatus,” is shown in the annexed diagram (Fig. 3).
Fig. 3.—Abney’s Colour-patch Apparatus.
The light of an electric lamp A placed inside the lantern is concentrated by the condensing lenses B upon a narrow adjustable slit C. The framework of this slit is attached to one end of a telescope tube, which carries at the other end an achromatic lens D of about 10 inches focus. The rays having been rendered parallel by D are refracted by the prism E; they then pass through a circular opening in the brass plate F to the lens G, the focal length of which is 7 inches, and form a little bright spectrum upon a white card held in a grooved support at H. The card being removed, we place at K a lens having a diameter of 5½ inches and a focal length of 18 inches or more, and adjust it so that a sharply defined image of the hole in the brass plate F is formed upon the distant white screen L. If all the lenses are correctly placed, this image, though formed entirely by the rays which constituted the little spectrum at H, will be perfectly free from colour even around the edge.
If we wish to project upon the screen L an enlarged image of the little spectrum, we have only to use another suitable lens I in conjunction with K: the diameter of that used by myself is 2¾ inches, and its focal length 6½ inches. When we have once found by trial the position in which this supplementary lens gives the clearest image[4] it is easy to arrange a contrivance for removing and replacing it correctly without need of any further adjustment.
This apparatus shows then that ordinary white light may be regarded as a mixture of all the variously coloured lights which occur in the spectrum, the sensation produced when it falls upon the eye being consequently a compound one.
From these and similar experiments the scientific neophyte is not unlikely to draw an erroneous conclusion. White light, he is apt to think, is always due to the combined action of rays of every possible wave-length, while coloured light consists of rays of one definite wave-length only. Neither of these inferences would be correct. It is not true that white light necessarily contains rays of all possible wave-lengths: the sensation of whiteness may, as will be shown by and bye, be produced quite as effectively by the combination of only two or three different wave-lengths. Nor is it true that such colours as we see in nature are always due to light of a single wave-length; light of this kind is indeed rarely met with outside laboratories and lecture rooms. Far more commonly coloured light consists of mixed rays, and like ordinary white light, it may, and generally does, contain all the colours of the spectrum, but in different proportions.
This last assertion is easily proved. By means of a slip of card we may intercept a portion of the little spectrum formed at H (Fig. 3). The dark shadow of the card in the enlarged spectrum on the screen is shown in Fig. 4. It will be noticed that the shadow cuts off a part only of the red, orange, and yellow light, allowing the remainder to pass through the projection lenses. There are still rays of every possible wave-length from extreme red to extreme violet, but the proportion of those towards the red end is less than it was before the card was interposed.
Fig. 4.—Partially intercepted Spectrum.
If now we remove the lens I (Fig. 3) and so mix the colours of this mutilated spectrum, the bright round patch where the mixed rays fall upon the screen will no longer appear white but greenish-blue. If we transfer the card to the other end of the little spectrum, so as to cause a partial eclipse of the violet, blue, and green rays, the colour of the patch will be changed to orange. If we remove the card altogether, the patch will once more become white.
It follows a fortiori that when any portion of the little spectrum is eclipsed totally, instead of only partially, the light from the remainder will appear, when combined, to be coloured. Very beautiful changes of hue are exhibited by the bright patch when a narrow opaque strip, such as the small blade of a pocket knife, is slowly moved along the little spectrum at H, eclipsing different portions of it in succession. The patch first becomes green, then by imperceptible gradations it changes successively to blue, purple, scarlet, orange, yellow, and finally, when the knife has completed its course, all colour disappears and the patch is again white.
We may improve upon this crude experiment, and, after Captain Abney’s plan, prepare a number of small cardboard stencils, with openings corresponding to any selected parts of the little spectrum. When a card so prepared is placed at H (Fig. 3) the bright patch upon the screen is formed by the combination of the selected rays, all the others being quenched. We shall find that under these conditions the bright patch is generally, but not always, coloured.
Fig. 5.—Stencil Cards.
The first diagram in Fig. 5 represents a blackened card, which allows only the red and a little of the orange to pass through. When this is inserted in the grooved holder at H, the bright patch immediately turns red. The second diagram shows another, which transmits the middle portion of the spectrum, but blocks the red and the violet at its two ends: with this card the colour of the patch becomes green. The third card has openings for the violet and the red rays: this turns the patch a beautiful purple, a hue which, as already mentioned, is not produced by light of any single wave-length. The purples are mixtures of red and violet or of red and blue.
Now I have in my possession three pieces of glass (or, to be strictly accurate, two pieces of glass and one glass-mounted gelatine film) which, when placed transversely in the beam of light, either at H (Fig. 3) or anywhere else, behave exactly like these three cardboard stencils. The first glass cuts off all the spectrum except the red and part of the orange, just as the first stencil does, though the line of demarcation is not quite so sharp. This is in fact a piece of red glass, or in other words the light that it transmits produces the sensation of red. The second glass, like the second stencil, allows the whole of the spectral rays to pass freely except the red and the violet, which disappear as if they were obstructed by an opaque body. This is a green glass. And the third (which is really a film of gelatine) cuts out the middle of the spectrum but transmits the red and violet ends. The colour of the gelatine is purple.[5]The glasses and the gelatine in question act like the cardboard stencils in completely cutting off some of the spectral rays and transmitting others, and they owe their apparent colours to the combined influence which the transmitted rays exert upon the eye. Many other coloured glasses merely weaken some of the rays, without entirely quenching any. A piece of pale yellow glass, for example, when placed in the path of the beam of light from which the spectrum on the screen is formed, simply diminishes the brightness of the blue region and does not wholly quench any of the rays; and again, a common kind of violet-coloured glass enfeebles, but does not quite obliterate, the middle portion of the spectrum.
From such observations as these we infer that the glasses derive their respective colours from the light which falls upon them. The first glass would not appear red if seen in a light which contained no red rays. This is easily proved by an experiment with the colour-patch apparatus. The spectrum being once more combined into a bright white patch (which turns red if the glass is for a moment interposed), let all the red rays and part of the orange be cut off with a suitable stencil. The re-combined light is no longer white but greenish-blue, as is evidenced by the colour of the patch; and nothing that is illuminated by this light can possibly appear red. The piece of red glass, if placed in the beam, will now cast a perfectly black shadow, and a square of bright red paper held in the middle of the patch will look as black as ink. It will be shown later how we may obtain light which, although it appears to the eye to differ in no respect from ordinary white daylight, yet contains no red component, and is consequently as powerless as this greenish-blue light to reveal any red colour in the objects which it illuminates.
If we substitute a stencil which admits only red rays, we shall obtain a beam of light in which no colour but red can be seen. Green and blue glasses when exposed to this light will cast black shadows, while pieces of green and blue paper will become either black or dark grey.
We see then that the colours of transparent objects, like the glasses used in these experiments, are brought out by a process of filtration. Certain of the coloured ingredients of white light are filtered out and quenched inside the glass, and it is to the remaining ingredients which pass through unimpeded that the observed colour is due. The energy of the absorbed rays is not lost of course, for energy, like matter, is indestructible. It is transformed into heat. A coloured glass held in a strong beam of light will in a short time become sensibly warmer than one that is clear and colourless.
In studying colour effects as produced by coloured glasses, we have at the same time been learning how the great majority of natural objects—not only those which are transparent but also those called opaque—become possessed of their colours. For the truth is that few things are perfectly opaque. When white light falls upon a coloured body, it generally penetrates to a small depth below the surface, and in so doing loses by absorption some of its coloured components, just as it does in passing through the pieces of glass. But before it has gone very far—generally much less than a thousandth part of an inch—it has encountered a number of little reflecting surfaces due to optical irregularities, which turn the light back again and compel it to pass a second time through the same thickness of the substance: it thus becomes still more effectively sifted, and on emerging is imbued with a colour due to such of the components as have not been quenched in the course of their double journey through a superficial layer of the substance.Any coloured rays reflected by an object must necessarily be contained in the light by which the object is seen. The following is a curious experiment illustrating this.
A large bright spectrum is projected upon a screen and in the green or blue portion of it is held a wall poster. The letters and figures upon the paper are seen to stand out boldly as if printed with the blackest ink. But if the poster is moved into the red part of the spectrum, the printing at once disappears as if by magic, and the paper appears perfectly blank. The explanation is that the letters are printed in red ink—they can reflect no light but red. Green or blue light falling upon them is absorbed and quenched, and the letters consequently appear black. On the other hand when the poster is illuminated by the red rays of the spectrum, the letters reflect just as much light as the paper itself, and are therefore indistinguishable from it.
Anything which, when illuminated by a source of white light, reflects all its various components equally and without absorbing a larger proportion of some than of others, appears white or grey. Between white and grey there is no essential difference except in luminosity, or brightness, that is to say, in the quantity of light reflected to the eye, or—to go a step further back—in the amplitude of the ether waves. Under different conditions of illumination any substance which reflects all the rays of the spectrum equally may appear either white or grey, or even black. A snowball can easily be made to look blacker than pitch, and a block of pitch whiter than snow.
It must have struck many of those who have thought about the matter at all as a most remarkable coincidence that sunlight should be white. White light, as we have seen, consists of a mixture of variously-coloured rays in very different and apparently arbitrary proportions, and if these proportions were a little changed the light would no longer be quite colourless. No ordinary artificial light is so exactly white as that of the sun. The light of candles, gas, oil, and electric glow-lamps is yellow; that of the electric arc (when unaffected by atmospheric absorption) is blue, and that of the incandescent gas burner green. It is exceedingly convenient that the light which serves us for the greater part of our waking lives should happen to be just so constituted that it is colourless.
But on a little further reflection it will, I think, appear that this is not the right way to look at the matter. It is precisely because the hue called white is the one which is associated with the light of our sun that we regard whiteness as synonymous with absence of colour. We take sunlight as our standard of neutrality, and anything that reflects it without altering the proportions of its constituents we consider as being colourless.
There can be little doubt that if the sun were purple instead of white, our sentiments as regards these two hues would be interchanged; we should talk quite naturally of “a pure purple, entirely free from any trace of colour,” or perhaps describe a lady’s costume as being of a “gaudy white.”
Even as things are, the standard of neutrality is not quite a hard and fast one. We have a tendency to regard any artificial light which we may happen to be using, as more free from colour than it would turn out to be if compared directly with sunlight. If in the middle of the day we go suddenly into a gas-lit room, we cannot fail to observe how intensely yellow the illumination at first appears; in a few minutes, however, the colour loses its obtrusiveness and we cease to take much notice of it.
The effect may be partly a physiological one, depending upon unequal fatigue of the various perceptive nerves of the retina; but I believe that it is to a large extent due to mental judgment. The standard of whiteness, or colour-zero, can apparently be changed within certain limits in a very short time, and, as we shall see later, this is only one of many instances in which our organs of vision seem to be incapable of recognising a constant standard of reference.
And now let us consider how it comes about that each elementary portion of the retina—at least in its central region—has the power of distinguishing so many hundreds of different hues. It is incredible that every little area of microscopic dimensions should be furnished with such a multitude of independent organs as would be necessary if each of the many colours met with in nature required a separate organ for its perception; and it is not necessary to suppose anything of the kind.
Experiment shows that all the various hues of the spectrum, as well as all (including white) that can be formed from their mixture, may be derived from no more than three distinct colours. There are, in fact, an indefinite number of triads of colours which, in suitable combinations, are capable of producing the sensation of every tone, tint, and shade of colour which the eye of man has ever beheld.
Old-fashioned books, such as an early edition of Ganot’s “Physics,” tell us that the three “primary” colours are red, yellow, and blue, and that all others are produced by mixtures of these. This was the basis of Sir David Brewster’s theory, which attained a very wide popularity, and even at the present time is held as an article of faith among the great majority of intelligent persons who have not paid any special attention to science. But it is not true. A fatal objection to it is the well-ascertained fact that no combination of red, yellow, and blue, or of any two of them, such as blue and yellow, for example, will produce green.
Yet every painter knows that if he mixes blue and yellow pigments together he gets green. That is one of the first things that a child learns when he is allowed to play with a box of water-colours, and no doubt Brewster was misled by the fact.
The truth is, that the colours of all, or almost all, known blue and yellow pigments happen to be composite. An ordinary blue paint reflects not only blue light, but a large quantity of green as well; while an ordinary yellow paint reflects a large quantity of green light in addition to yellow. When such paints are mixed together, the blue and yellow hues neutralise one another, and only the green, which is common to both, remains.
The spectrum apparatus will make this clearer. Hold a piece of bright blue glass before the slit; the light passing through the glass will be analysed by the prism, and you will see that it really contains almost as much green as blue. If a yellow glass is substituted, not only will yellow light be transmitted, but, as before, a considerable quantity of green. If now both glasses be placed together before the slit, what will happen? The yellow glass will stop the blue light transmitted by the blue glass, the blue glass will stop the yellow light transmitted by the yellow glass, and only the green light which both glasses have the power of transmitting will pass through unimpeded, forming a band of pure green colour upon the screen.
The combination of simple blue and yellow lights of suitable relative luminosities results in the formation of white or neutral light. If the blue is a little in excess, the combined light will be of a bluish tint; if the yellow is in excess, the combination will have a yellowish tint. It will never contain any trace of green. The combination of simple spectral blue and yellow is easily effected by the colour-patch apparatus, and the result will be found to bear out what has been said.
Since, then, no mixture of red, yellow, and blue, or of any two of them, will produce green, we cannot regard these colours as being, in Brewster’s sense of the term, primary ones.
But it is quite possible to find a group of three different hues—and indeed many such groups—which when made to act upon the eye simultaneously and in the right proportions can give rise to the sensation of any colour whatever. Now this experimental fact is obviously suggestive of a possible converse, namely, that almost every colour sensation may in reality be a compound one, the resultant of not more than three simple sensations. Assuming this to be so, it is evident that if each elementary area of the retina were provided with only three suitable colour organs, nothing more would be requisite for the perception of an indefinite number of distinct colours.Such a hypothesis was first proposed by Thomas Young at the beginning of the present century; but it came before its time and met with no attention until fifty years later, when it was unearthed by the distinguished physicist and physiologist, Helmholtz, who accorded to it his powerful support and modified it in one or two important details.
Fig. 6.—Helmholtz’s Curves of Colour Perception.
According to the Young-Helmholtz theory, as it is now called, there are three different kinds of nerve-fibres distributed over the retina. The first, when separately stimulated, produce the sensation of red, the second that of green, and the third that of violet. Light having the same wave-length as the extreme red rays of the spectrum stimulates the red nerve-fibres only; that having the same wave-length as the extreme violet rays stimulates the violet nerve-fibres only. Light of all intermediate wave-lengths, corresponding to the orange, yellow, green, and blue of the spectrum, stimulates all three sets of nerve-fibres at once, but in different degrees. The proportionate stimulation of the red, green, and violet nerves throughout the spectrum is indicated in Fig. 6, which is derived from the rough sketch first given by Helmholtz. The yellow rays of the spectrum, it will be seen, excite the red and green nerves strongly, and the violet feebly; green light excites the green nerves strongly, and the red and violet moderately; while blue light excites the green and violet nerves strongly, and the red feebly.
Fig. 7.—KÖnig’s Curves.
Fig. 7 shows another set of curves given more recently by Dr. KÖnig as the result of many thousands of experiments made, not only upon persons whose vision was normal, but also upon some who were colour-blind. KÖnig found that the equations he obtained were best satisfied by assuming as the normal fundamental sensations a purplish red (not to be found in the spectrum), a green like that of wave-length 5050, and a blue like that of wave-length 4700 approximately, the two latter, however, being purer or more saturated than any actual spectrum colour. But KÖnig’s curves are not consistent with every class of vision which he examined, and the question as to what are the true fundamental colour-sensations, if such really exist at all, cannot yet be regarded as finally settled.[6]The Young-Helmholtz theory of colour-vision, whether or not it is destined in the future to be superseded by some other, has at all events proved an invaluable guide in experimental work, and there are very few colour phenomena of which it is not competent to offer a satisfactory explanation. It has at present only one serious rival—the theory of Hering, which, although it seems to be curiously attractive to many physiologists, can hardly be said to present less serious difficulties than that which it seeks to displace. Neither of these competing theories has yet had its fundamental assumptions confirmed by any direct evidence, and the advantage must rest with the one which best accords with the facts of colour vision. In my judgment the older of the two is to be greatly preferred as a useful working hypothesis.
Certain curiosities of vision with which I propose to deal in a future chapter depend upon the properties of what are known as complementary colours. Two colours are said to be complementary to each other when their combination in proper proportions results in the formation of white.
Fig. 8.—Stencil Card for Complementary Colours.
If we produce a compound hue by mixing together the colours of any portion of the spectrum, and a second compound hue by mixing the remainder of the spectrum, it must be evident that these two hues are necessarily complementary, for when they are united they contain together all the elements of the entire spectrum, and therefore appear as white. This may be illustrated with the aid of the colour-patch apparatus. Place at H (Fig. 3) a cardboard stencil of the form shown in Fig. 8, and focus upon it a little spectrum, the principal hues of which are indicated by the letters R O Y G B V (red, orange, yellow, green, blue, violet). The two oblong apertures in the card should be of exactly the same height, and the card so placed that one aperture may admit rays extending from the red end of the spectrum to about the middle of the green, while the other admits rays from the remainder of the spectrum. If now the lower aperture be covered, only the red, orange, yellow, and part of the green rays will pass through the stencil, and these being combined by the lens K (Fig. 3) will form upon the screen a bright patch, the colour of which will be yellow. If the upper aperture be covered, and the rest of the green, together with the blue and violet rays, allowed to pass through the other, the colour of the patch will become blue; and if both apertures be uncovered at the same time, rays from the whole length of the spectrum will pass through the stencil, and the patch will, of course, turn white. The yellow and the blue which were compounded from the two portions of the spectrum are, therefore, in accordance with the definition, complementary colours.In a similar manner by dividing the spectrum into any two portions whatever—as, for example, by the complicated stencil shown in Fig. 9—we can obtain an indefinite number of pairs of complementary colours.
Fig. 9.—Stencil Card for Complementary Colours.
But it is by no means indispensable that both or either of a pair of complementary colours should be compound. To prove this, two strips of card with narrow vertical openings A and B are prepared as shown in Fig. 10. The cards are placed one above the other and can be slipped in a horizontal direction, so that the narrow openings can be brought into any desired part of the spectrum which is indicated in outline by the dotted oblong.
Fig. 10.—Slide for mixing any two Spectral Colours.
Bring the opening A of the upper card into the yellow of the spectrum and the opening B of the lower card into the blue. The bright patch formed upon the screen will then be illuminated by simple blue and yellow rays; yet it will be white—not green, as it would be if Brewster’s theory were correct. If upon the first trial the white should not be absolutely pure, it can easily be made so by partially covering either A or B—the first if the white is yellowish, the second if it is bluish. Simple spectral blue and yellow are therefore no less truly complementary colours than are the compound hues formed when the spectrum is divided into two parts.
It is noticeable, however, that the white light resulting from the combination of blue and yellow, though it cannot be distinguished by the eye from ordinary white light, is yet possessed of very different properties. Most coloured objects when illuminated by it have their hues greatly altered; a piece of ribbon, for example, which in common light is bright red, will appear when held in the blue-yellow light to be of a dark slate colour, almost black.
If the opening A is placed in any part whatever of the spectrum except the green, it will always be possible, by moving B backwards or forwards, to find some other part where the colour is complementary to that at A. To green there is no simple complementary; a purple is required, which is not found in the spectrum, but may be formed by combining small portions of spectral blue and red. For studying mixtures of three simple colours, a third slide may be added to the two shown in Fig. 10.
The following little table gives the principal pairs of complementary colours.
Table of Complementary Colours.
Red | | Greenish-blue |
Orange | | Sky-blue |
Yellow | | Blue |
Greenish-yellow | | Violet |
Green | | Purple |