Chapter VII.

Previous

Discovery of Jupiter's satellites—Kepler—Sizzi—Astrologers—MÆstlin—Horky—Mayer.

As soon as Galileo had provided himself with a second instrument, he began a careful examination of the heavenly bodies, and a series of splendid discoveries soon rewarded his diligence. After considering the beautiful appearances which the varied surface of the moon presented to this new instrument, he turned his telescope towards Jupiter, and his attention was soon arrested by the singular position of three small stars, near the body of that planet, which appeared almost in a straight line with it, and in the direction of the ecliptic. The following evening he was surprised to find that two of the three which had been to the eastward of the planet, now appeared on the contrary side, which he could not reconcile with the apparent motion of Jupiter among the fixed stars, as given by the tables. Observing these night after night, he could not fail to remark that they changed their relative positions. A fourth also appeared, and in a short time he could no longer refuse to believe that these small stars were four moons, revolving round Jupiter in the same manner in which our earth is accompanied by its single attendant. In honour of his patron Cosmo, he named them the MedicÆan stars. As they are now hardly known by this appellation, his doubts, whether he should call them MedicÆan, after Cosmo's family, or Cosmical, from his individual name, are become of less interest.

An extract from a letter which Galileo received on this occasion from the court of France, will serve to show how highly the honour of giving a name to these new planets was at that time appreciated, and also how much was expected from Galileo's first success in examining the heavens. "The second request, but the most pressing one which I can make to you, is, that you should determine, if you discover any other fine star, to call it by the name of the great star of France, as well as the most brilliant of all the earth; and, if it seems fit to you, call it rather by his proper name of Henri, than by the family name of Bourbon: thus you will have an opportunity of doing a thing just and due and proper in itself, and at the same time will render yourself and your family rich and powerful for ever." The writer then proceeds to enumerate the different claims of Henri IV. to this honour, not forgetting that he married into the family of the Medici, &c.

The result of these observations was given to the world, in an Essay which Galileo entitled Nuncius Sidereus, or the Intelligencer of the Stars; and it is difficult to describe the extraordinary sensation which its publication produced. Many doubted, many positively refused to believe, so novel an announcement; all were struck with the greatest astonishment, according to their respective opinions, either at the new view of the universe thus offered to them, or at the daring audacity of Galileo in inventing such fables. We shall proceed to extract a few passages from contemporary writers relative to this book, and the discoveries announced in it.

Kepler deserves precedence, both from his own celebrity, and from the lively and characteristic account which he gives of his first receiving the intelligence:—"I was sitting idle at home, thinking of you, most excellent Galileo, and your letters, when the news was brought me of the discovery of four planets by the help of the double eye-glass. Wachenfels stopped his carriage at my door to tell me, when such a fit of wonder seized me at a report which seemed so very absurd, and I was thrown into such agitation at seeing an old dispute between us decided in this way, that between his joy, my colouring, and the laughter of both, confounded as we were by such a novelty, we were hardly capable, he of speaking, or I of listening. My amazement was increased by the assertion of Wachenfels, that those who sent this news from Galileo were celebrated men, far removed by their learning, weight, and character, above vulgar folly; that the book was actually in the press, and would be published immediately. On our separating, the authority of Galileo had the greatest influence on me, earned by the accuracy of his judgment, and excellence of his understanding; so I immediately fell to thinking how there could be any addition to the number of the planets without overturning my Mysterium Cosmographicum, published thirteen years ago, according to which Euclid's five regular solids do not allow more than six planets round the sun."

This was one of the many wild notions of Kepler's fanciful brain, among which he was lucky enough at length to hit upon the real and principal laws of the planetary motions. His theory may be briefly given in his own words:—"The orbit of the earth is the measure of the rest. About it circumscribe a dodecahedron. The sphere including this will be that of Mars. About Mars' orbit describe a tetrahedron: the sphere containing this will be Jupiter's orbit. Round Jupiter's describe a cube: the sphere including this will be Saturn's. Within the earth's orbit inscribe an icosahedron: the sphere inscribed in it will be Venus's orbit. In Venus inscribe an octahedron: the sphere inscribed in it will be Mercury's. You have now the reason of the number of the planets:" for as there are no more than the five regular solids here enumerated, Kepler conceived this to be a satisfactory reason why there could be neither more nor less than six planets. His letter continues:—"I am so far from disbelieving the existence of the four circumjovial planets, that I long for a telescope to anticipate you, if possible, in discovering two round Mars, (as the proportion seems to me to require,) six or eight round Saturn, and perhaps one each round Mercury and Venus."

The reader has here an opportunity of verifying Galileo's observation, that Kepler's method of philosophizing differed widely from his own. The proper line is certainly difficult to hit between the mere theorist and the mere observer. It is not difficult at once to condemn the former, and yet the latter will deprive himself of an important, and often indispensable assistance, if he neglect from time to time to consolidate his observations, and thence to conjecture the course of future observation most likely to reward his assiduity. This cannot be more forcibly expressed than in the words of Leonardo da Vinci:[46] "Theory is the general, experiments are the soldiers. The interpreter of the works of nature is experiment; that is never wrong; it is our judgment which is sometimes deceived, because we are expecting results which experiment refuses to give. We must consult experiment, and vary the circumstances, till we have deduced general rules, for it alone can furnish us with them. But you will ask, what is the use of these general rules? I answer, that they direct us in our inquiries into nature and the operations of art. They keep us from deceiving ourselves and others, by promising ourselves results which we can never obtain."

In the instance before us, it is well known that, adopting some of the opinions of Bruno and Brutti, Galileo, even before he had seen the satellites of Jupiter, had allowed the possibility of the discovery of new planets; and we can scarcely suppose that they had weakened his belief in the probability of further success, or discouraged him from examining the other heavenly bodies. Kepler on the contrary had taken the opposite side of the argument; but no sooner was the fallacy of his first position undeniably demonstrated, than, passing at once from one extreme to the other, he framed an unsupported theory to account for the number of satellites which were round Jupiter, and for those which he expected to meet with elsewhere. Kepler has been styled the legislator of the skies; his laws were promulgated rather too arbitrarily, and they often failed, as all laws must do which are not drawn from a careful observation of the nature of those who are to be governed by them. Astronomers have reason to be grateful for the theorems which he was the first to establish; but so far as regards the progress of the science of inductive reasoning, it is perhaps to be regretted, that the seventeen years which he wasted in random and unconnected guesses should have been finally rewarded, by discoveries splendid enough to shed deceitful lustre upon the method by which he arrived at them.

Galileo himself clearly perceived the fallacious nature of these speculations on numbers and proportions, and has expressed his sentiments concerning them very unequivocally. "How great and common an error appears to me the mistake of those who persist in making their knowledge and apprehension the measure of the apprehension and knowledge of God; as if that alone were perfect, which they understand to be so. But I, on the contrary, observe that Nature has other scales of perfection, which we cannot comprehend, and rather seem disposed to class among imperfections. For instance, among the relations of different numbers, those appear to us most perfect which exist between numbers nearly related to each other; as the double, the triple, the proportion of three to two, &c.; those appear less perfect which exist between numbers remote from, and prime to each other; as 11 to 7, 17 to 13, 53 to 37, &c.; and most imperfect of all do those appear which exist between incommensurable quantities, which by us are nameless and inexplicable. Consequently, if the task had been given to a man, of establishing and ordering the rapid motions of the heavenly bodies, according to his notions of perfect proportions, I doubt not that he would have arranged them according to the former rational proportions; but, on the contrary, God, with no regard to our imaginary symmetries, has ordered them in proportions not only incommeasurable and irrational, but altogether inappreciable by our intellect. A man ignorant of geometry may perhaps lament, that the circumference of a circle does not happen to be exactly three times the diameter, or in some other assignable proportion to it, rather than such that we have not yet been able to explain what the ratio between them is; but one who has more understanding will know that if they were other than they are, thousands of admirable conclusions would have been lost, and that none of the other properties of the circle would have been true: the surface of the sphere would not be quadruple of a great circle, nor the cylinder be to the sphere as three to two: in short, no part of geometry would be true, and as it now is. If one of our most celebrated architects had had to distribute this vast multitude of fixed stars through the great vault of heaven, I believe he would have disposed them with beautiful arrangements of squares, hexagons, and octagons; he would have dispersed the larger ones among the middle sized and the less, so as to correspond exactly with each other; and then he would think he had contrived admirable proportions: but God, on the contrary, has shaken them out from His hand as if by chance, and we, forsooth, must think that He has scattered them up yonder without any regularity, symmetry, and elegance."

It is worth remarking that the dangerous ideas of aptitude and congruence of numbers had taken such deep and general root, that long afterwards, when the reality of Jupiter's satellites was incontestably established, and Huyghens had discovered a similar satellite near Saturn, he was so rash as to declare his belief, (unwarned by the vast progress which astronomy had made in his own time,) that no more satellites would be discovered, since the one which he discovered near Saturn, with Jupiter's four, and our moon, made up the number six, exactly equal to the number of the principal planets. Every reader knows that this notion, so unworthy the genius of Huyghens, has been since exploded by the discovery both of new planets, and new satellites.

Francesco Sizzi, a Florentine astronomer, took the matter up in a somewhat different strain from Kepler.[47]—"There are seven windows given to animals in the domicile of the head, through which the air is admitted to the rest of the tabernacle of the body, to enlighten, to warm, and nourish it, which are the principal parts of the ??????s?? (or little world); two nostrils, two eyes, two ears, and a mouth; so in the heavens, as in a a?????s?? (or great world), there are two favourable stars, two unpropitious, two luminaries, and Mercury alone undecided and indifferent. From which and many other similar phenomena of nature, such as the seven metals, &c., which it were tedious to enumerate, we gather that the number of planets is necessarily seven. Moreover, the satellites are invisible to the naked eye, and therefore can exercise no influence on the earth, and therefore would be useless, and therefore do not exist. Besides, as well the Jews and other ancient nations as modern Europeans have adopted the division of the week into seven days, and have named them from the seven planets: now if we increase the number of the planets this whole system falls to the ground." To these remarks Galileo calmly replied, that whatever their force might be, as a reason for believing beforehand that no more than seven planets would be discovered, they hardly seemed of sufficient weight to destroy the new ones when actually seen.

Others, again, took a more dogged line of opposition, without venturing into the subtle analogies and arguments of the philosopher just cited. They contented themselves, and satisfied others, with the simple assertion, that such things were not, and could not be, and the manner in which they maintained themselves in their incredulity was sufficiently ludicrous. "Oh, my dear Kepler,"[48] says Galileo, "how I wish that we could have one hearty laugh together. Here, at Padua, is the principal professor of philosophy, whom I have repeatedly and urgently requested to look at the moon and planets through my glass, which he pertinaciously refuses to do. Why are you not here? what shouts of laughter we should have at this glorious folly! and to hear the professor of philosophy at Pisa labouring before the grand duke with logical arguments, as if with magical incantations, to charm the new planets out of the sky."

Another opponent of Galileo deserves to be named, were it only for the singular impudence of the charge he ventures to bring against him. "We are not to think," says Christmann, in the Appendix to his Nodus Gordius, "that Jupiter has four satellites given him by nature, in order, by revolving round him, to immortalize the name of the Medici, who first had notice of the observation. These are the dreams of idle men, who love ludicrous ideas better than our laborious and industrious correction of the heavens.—Nature abhors so horrible a chaos, and to the truly wise such vanity is detestable."

Galileo was also urged by the astrologers to attribute some influence, according to their fantastic notions, to the satellites, and the account which he gives his friend Dini of his answer to one of this class is well worth extracting, as a specimen of his method of uniting sarcasm with serious expostulation; "I must," says he, "tell you what I said a few days back to one of those nativity-casters, who believe that God, when he created the heavens and the stars, had no thoughts beyond what they can themselves conceive, in order to free myself from his tedious importunity; for he protested, that unless I would declare to him the effect of the MedicÆan planets, he would reject and deny them as needless and superfluous. I believe this set of men to be of Sizzi's opinion, that astronomers discovered the other seven planets, not by seeing them corporally in the skies, but only from their effects on earth,—much in the manner in which some houses are discovered to be haunted by evil spirits, not by seeing them, but from the extravagant pranks which are played there. I replied, that he ought to reconsider the hundred or thousand opinions which, in the course of his life, he might have given, and particularly to examine well the events which he had predicted with the help of Jupiter, and if he should find that all had succeeded conformably to his predictions, I bid him prophecy merrily on, according to his old and wonted rules; for I assured him that the new planets would not in any degree affect the things which are already past, and that in future he would not be a less fortunate conjuror than he had been: but if, on the contrary, he should find the events depending on Jupiter, in some trifling particulars not to have agreed with his dogmas and prognosticating aphorisms, he ought to set to work to find new tables for calculating the constitution of the four Jovial circulators at every bygone moment, and, perhaps, from the diversity of their aspects, he would be able, with accurate observations and multiplied conjunctions, to discover the alterations and variety of influences depending upon them; and I reminded him, that in ages past they had not acquired knowledge with little labour, at the expense of others, from written books, but that the first inventors acquired the most excellent knowledge of things natural and divine with study and contemplation of the vast book which nature holds ever open before those who have eyes in their forehead and in their brain; and that it was a more honourable and praiseworthy enterprize with their own watching, toil, and study, to discover something admirable and new among the infinite number which yet remain concealed in the darkest depths of philosophy, than to pass a listless and lazy existence, labouring only to darken the toilsome inventions of their neighbours, in order to excuse their own cowardice and inaptitude for reasoning, while they cry out that nothing can be added to the discoveries already made."

The extract given above from Kepler, is taken from an Essay, published with the later editions of the Nuncius, the object and spirit of which seem to have been greatly misunderstood, even by some of Kepler's intimate friends.—They considered it as a covert attack upon Galileo, and, accordingly, Maestlin thus writes to him:—"In your Essay (which I have just received) you have plucked Galileo's feathers well; I mean, that you have shown him not to be the inventor of the telescope, not to have been the first who observed the irregularities of the moon's surface, not to have been the first discoverer of more worlds than the ancients were acquainted with, &c. One source of exultation was still left him, from the apprehension of which Martin Horky has now entirely delivered me." It is difficult to discover in what part of Kepler's book Maestlin found all this, for it is one continued encomium upon Galileo; insomuch that Kepler almost apologizes in the preface for what may seem his intemperate admiration of his friend. "Some might wish I had spoken in more moderate terms in praise of Galileo, in consideration of the distinguished men who are opposed to his opinions, but I have written nothing fulsome or insincere. I praise him, for myself; I leave other men's judgments free; and shall be ready to join in condemnation when some one wiser than myself shall, by sound reasoning, point out his errors." However, Maestlin was not the only one who misunderstood Kepler's intentions: the Martin Horky of whom he speaks, a young German, also signalized himself by a vain attack upon the book which he thought his patron Kepler condemned. He was then travelling in Italy, whence he wrote to Kepler his first undetermined thoughts about the new discoveries. "They are wonderful; they are stupendous; whether they are true or false I cannot tell."[49] He seems soon to have decided that most reputation was to be gained on the side of Galileo's opponents, and his letters accordingly became filled with the most rancorous abuse of him. At the same time, that the reader may appreciate Horky's own character, we shall quote a short sentence at the end of one of his letters, where he writes of a paltry piece of dishonesty with as great glee as if he had solved an ingenious and scientific problem. After mentioning his meeting Galileo at Bologna, and being indulged with a trial of his telescope, which, he says, "does wonders upon the earth, but represents celestial objects falsely;"[50] he concludes with the following honourable sentence:—"I must confide to you a theft which I committed. I contrived to take a mould of the glass in wax, without the knowledge of any one, and, when I get home, I trust to make a telescope even better than Galileo's own."

Horky having declared to Kepler, "I will never concede his four new planets to that Italian from Padua though I die for it," followed up this declaration by publishing a book against Galileo, which is the one alluded to by Maestlin, as having destroyed the little credit which, according to his view, Kepler's publication had left him. This book professes to contain the examination of four principal questions touching the alleged planets; 1st, Whether they exist? 2nd, What they are? 3rd, What they are like? 4th, Why they are? The first question is soon disposed of, by Horky's declaring positively that he has examined the heavens with Galileo's own glass, and that no such thing as a satellite about Jupiter exists. To the second, he declares solemnly, that he does not more surely know that he has a soul in his body, than that reflected rays are the sole cause of Galileo's erroneous observations. In regard to the third question, he says, that these planets are like the smallest fly compared to an elephant; and, finally, concludes on the fourth, that the only use of them is to gratify Galileo's "thirst of gold," and to afford himself a subject of discussion.[51]

Galileo did not condescend to notice this impertinent folly; it was answered by Roffini, a pupil of Magini, and by a young Scotchman of the name of Wedderburn, then a student at Padua, and afterwards a physician at the Court of Vienna. In the latter reply we find it mentioned, that Galileo was also using his telescope for the examination of insects, &c.[52] Horky sent his performance triumphantly to Kepler, and, as he returned home before receiving an answer, he presented himself before his patron in the same misapprehension under which he had written, but the philosopher received him with a burst of indignation which rapidly undeceived him. The conclusion of the story is characteristic enough to be given in Kepler's own account of the matter to Galileo, in which, after venting his wrath against this "scum of a fellow," whose "obscurity had given him audacity," he says, that Horky begged so hard to be forgiven, that "I have taken him again into favour upon this preliminary condition, to which he has agreed:—that I am to shew him Jupiter's satellites, AND HE IS TO SEE THEM, and own that they are there."

In the same letter Kepler writes, that although he has himself perfect confidence in the truth of Galileo's assertions, yet he wishes he could furnish him with some corroborative testimonies, which Kepler could quote in arguing the point with others. This request produced the following reply, from which the reader will also learn the new change which had now taken place in Galileo's fortunes, the result of the correspondence with Florence, part of which we have already extracted.[53] "In the first place, I return you my thanks that you first, and almost alone, before the question had been sifted (such is your candour and the loftiness of your mind), put faith in my assertions. You tell me you have some telescopes, but not sufficiently good to magnify distant objects with clearness, and that you anxiously expect a sight of mine, which magnifies images more than a thousand times. It is mine no longer, for the Grand Duke of Tuscany has asked it of me, and intends to lay it up in his museum, among his most rare and precious curiosities, in eternal remembrance of the invention: I have made no other of equal excellence, for the mechanical labour is very great: I have, however, devised some instruments for figuring and polishing them which I am unwilling to construct here, as they could not conveniently be carried to Florence, where I shall in future reside. You ask, my dear Kepler, for other testimonies:—I produce, for one, the Grand Duke, who, after observing the MedicÆan planets several times with me at Pisa during the last months, made me a present, at parting, worth more than a thousand florins, and has now invited me to attach myself to him with the annual salary of one thousand florins, and with the title of Philosopher and Principal Mathematician to His Highness; without the duties of any office to perform, but with the most complete leisure; so that I can complete my Treatises on Mechanics, on the Constitution of the Universe, and on Natural and Violent Local Motion, of which I have demonstrated geometrically many new and admirable phenomena. I produce, for another witness, myself, who, although already endowed in this college with the noble salary of one thousand florins, such as no professor of mathematics ever before received, and which I might securely enjoy during my life, even if these planets had deceived me and should disappear, yet quit this situation, and betake me where want and disgrace will be my punishment should I prove to have been mistaken."

It is difficult not to regret that Galileo should be thus called on to resign his best glasses, but it appears probable that on becoming more familiar with the Grand Duke, he ventured to suggest that this telescope would be more advantageously employed in his own hands, than pompously laid up in a museum; for in 1637 we find him saying, in answer to a request from his friend Micanzio to send him a telescope—"I am sorry that I cannot oblige you with the glasses for your friend, but I am no longer capable of making them, and I have just parted with two tolerably good ones which I had, reserving only my old discoverer of celestial novelties which is already promised to the Grand Duke." Cosmo was dead in 1637, and it is his son Ferdinand who is here meant, who appears to have inherited his father's love of science. Galileo tells us, in the same letter, that Ferdinand had been amusing himself for some months with making object-glasses, and always carried one with him to work at wherever he went.

When forwarding this telescope to Cosmo in the first instance, Galileo adds, with a very natural feeling—"I send it to his highness unadorned and unpolished, as I made it for my own use, and beg that it may always be left in the same state; for none of the old parts ought to be displaced to make room for new ones, which will have had no share in the watchings and fatigues of these observations." A telescope was in existence, though with the object glass broken, at the end of the last century, and probably still is in the Museum at Florence, which was shewn as the discoverer of Jupiter's satellites. Nelli, on whose authority this is mentioned, appears to question its genuineness. The first reflecting telescope, made with Newton's own hands, and scarcely possessing less interest than the first of Galileo's, is preserved in the library of the Royal Society.

By degrees the enemies of Galileo and of the new stars found it impossible to persevere in their disbelief, whether real or pretended, and at length seemed resolved to compensate for the sluggishness of their perception, by its acuteness when brought into action. Simon Mayer published his "Mundus Jovialis" in 1614, in which he claims to have been an original observer of the satellites, but, with an affectation of candour, allows that Galileo observed them probably about the same time. The earliest observation which he has recorded is dated 29th December, 1609, but, not to mention the total want of probability that Mayer would not have immediately published so interesting a discovery, it is to be observed, that, as he used the old style, this date of 29th December agrees with the 8th January, 1610, of the new style, which was the date of Galileo's second observation, and Galileo ventured to declare his opinion, that this pretended observation was in fact a plagiarism.

Scheiner counted five, Rheita nine, and other observers, with increasing contempt for Galileo's imperfect announcements, carried the number as high as twelve.[54] In imitation of Galileo's nomenclature, and to honour the sovereigns of the respective observers, these supposed additional satellites were dignified with the names of Vladislavian, Agrippine, Urbanoctavian, and Ferdinandotertian planets; but a very short time served to show it was as unsafe to exceed as to fall short of the number which Galileo had fixed upon, for Jupiter rapidly removed himself from the neighbourhood of the fixed stars, which gave rise to these pretended discoveries, carrying with him only his four original attendants, which continued in every part of his orbit to revolve regularly about him.

Perhaps we cannot better wind up this account of the discovery of Jupiter's satellites, and of the intense interest they have at all times inspired, than in the words of one who inherits a name worthy to be ranked with that of Galileo in the list of astronomical discoverers, and who takes his own place among the most accomplished mathematicians of the present times. "The discovery of these bodies was one of the first brilliant results of the invention of the telescope; one of the first great facts which opened the eyes of mankind to the system of the universe, which taught them the comparative insignificance of their own planet, and the superior vastness and nicer mechanism of those other bodies, which had before been distinguished from the stars only by their motion, and wherein none but the boldest thinkers had ventured to suspect a community of nature with our own globe. This discovery gave the holding turn to the opinions of mankind respecting the Copernican system; the analogy presented by these little bodies (little however only in comparison with the great central body about which they revolve) performing their beautiful revolutions in perfect harmony and order about it, being too strong to be resisted. This elegant system was watched with all the curiosity and interest the subject naturally inspired. The eclipses of the satellites speedily attracted attention, and the more when it was discerned, as it speedily was, by Galileo himself, that they afforded a ready method of determining the difference of longitudes of distant places on the earth's surface, by observations of the instants of their disappearances and reappearances, simultaneously made. Thus the first astronomical solution of the great problem of the longitude, the first mighty step which pointed out a connection between speculative astronomy and practical utility, and which, replacing the fast dissipating dreams of astrology by nobler visions, showed how the stars might really, and without fiction, be called arbiters of the destinies of empires, we owe to the satellites of Jupiter, those atoms imperceptible to the naked eye, and floating like motes in the beam of their primary—itself an atom to our sight, noticed only by the careless vulgar as a large star, and by the philosophers of former ages as something moving among the stars, they knew not what, nor why: perhaps only to perplex the wise with fruitless conjectures, and harass the weak with fears as idle as their theories."[55]

FOOTNOTES:

[46] Venturi. Essai sur les ouvrages de Leo. da Vinci.

[47] Dianoia Astronomica, Venetiis, 1610.

[48] Kepleri EpistolÆ.

[49] Kepleri EpistolÆ.

[50] It may seem extraordinary that any one could support an argument by this partial disbelief in the instrument, which was allowed on all hands to represent terrestrial objects correctly. A similar instance of obstinacy, in an almost identical case though in a more unpretending station, once came under the writer's own observation. A farmer in Cambridgeshire, who had acquired some confused notions of the use of the quadrant, consulted him on a new method of determining the distances and magnitudes of the sun and moon, which he declared were far different from the quantities usually assigned to them. After a little conversation, the root of his error, certainly sufficiently gross, appeared to be that he had confounded the angular measure of a degree, with 69½ miles, the linear measure of a degree on the earth's surface. As a short way of showing his mistake, he was desired to determine, in the same manner, the height of his barn which stood about 30 yards distant; he lifted the quadrant to his eye, but perceiving, probably, the monstrous size to which his principles were forcing him, he said, "Oh, Sir, the quadrant's only true for the sky." He must have been an objector of this kind, who said to Galileo,—"Oh, Sir, the telescope's only true for the earth."

[51] Venturi.

[52] Quatuor probl. confut. per J. Wedderbornium, Scotobritannum. Patavii, 1610.

[53] See page 18.

[54] Sherburne's Sphere of Manilius. London, 1675.

[55] Herschel's Address to the Astronomical Society, 1827.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page