Chapter IV.

Previous

Astronomy before Copernicus—Fracastoro—Bacon—Kepler—Galileo's Treatise on the Sphere.

This period of Galileo's lectureship at Padua derives interest from its including the first notice which we find of his having embraced the doctrines of the Copernican astronomy. Most of our readers are aware of the principles of the theory of the celestial motions which Copernicus restored; but the number of those who possess much knowledge of the cumbrous and unwieldy system which it superseded is perhaps more limited. The present is not a fit opportunity to enter into many details respecting it; these will find their proper place in the History of Astronomy: but a brief sketch of its leading principles is necessary to render what follows intelligible.

The earth was supposed to be immoveably fixed in the centre of the universe, and immediately surrounding it the atmospheres of air and fire, beyond which the sun, moon, and planets, were thought to be carried round the earth, fixed each to a separate orb or heaven of solid but transparent matter. The order of distance in which they were supposed to be placed with regard to the central earth was as follows: The Moon, Mercury, Venus, The Sun, Mars, Jupiter, and Saturn. It became a question in the ages immediately preceding Copernicus, whether the Sun was not nearer the Earth than Mercury, or at least than Venus; and this question was one on which the astronomical theorists were then chiefly divided.

We possess at this time a curious record of a former belief in this arrangement of the Sun and planets, in the order in which the days of the week have been named from them. According to the dreams of Astrology, each planet was supposed to exert its influence in succession, reckoning from the most distant down to the nearest, over each hour of the twenty-four. The planet which was supposed to predominate over the first hour, gave its name to that day.[17] The general reader will trace this curious fact more easily with the French or Latin names than with the English, which have been translated into the titles of the corresponding Saxon deities. Placing the Sun and planets in the following order, and beginning, for instance, with Monday, or the Moon's day; Saturn ruled the second hour of that day, Jupiter the third, and so round till we come again and again to the Moon on the 8th, 15th, and 22d hours; Saturn ruled the 23d, Jupiter the 24th, so that the next day would be the day of Mars, or, as the Saxons translated it, Tuisco's day, or Tuesday. In the same manner the following days would belong respectively to Mercury or Woden, Jupiter or Thor, Venus or Frea, Saturn or Seater, the Sun, and again the Moon. In this manner the whole week will be found to complete the cycle of the seven planets.

Cycle of the seven planets.

The other stars were supposed to be fixed in an outer orb, beyond which were two crystalline spheres, (as they were called,) and on the outside of all, the primum mobile or first moveable, which sphere was supposed to revolve round the earth in twenty-four hours, and by its friction, or rather, as most of the philosophers of that day chose to term it, by the sort of heavenly influence which it exercised on the interior orbs, to carry them round with a similar motion. Hence the diversity of day and night. But beside this principal and general motion, each orb was supposed to have one of its own, which was intended to account for the apparent changes of position of the planets with respect to the fixed stars and to each other. This supposition, however, proving insufficient to account for all the irregularities of motion observed, two hypotheses were introduced.—First, that to each planet belonged several concentric spheres or heavens, casing each other like the coats of an onion, and, secondly, that the centres of these solid spheres, with which the planet revolved, were placed in the circumference of a secondary revolving sphere, the centre of which secondary sphere was situated at the earth. They thus acquired the names of Eccentrics or Epicycles, the latter word signifying a circle upon a circle. The whole art of astronomers was then directed towards inventing and combining different eccentric and epicyclical motions, so as to represent with tolerable fidelity the ever varying phenomena of the heavens. Aristotle had lent his powerful assistance in this, as in other branches of natural philosophy, in enabling the false system to prevail against and obliterate the knowledge of the true, which, as we gather from his own writings, was maintained by some philosophers before his time. Of these ancient opinions, only a few traces now remain, principally preserved in the works of those who were adverse to them. Archimedes says expressly that Aristarchus of Samos, who lived about 300 B. C., taught the immobility of the sun and stars, and that the earth is carried round the central sun.[18] Aristotle's words are: "Most of those who assert that the whole concave is finite, say that the earth is situated in the middle point of the universe: those who are called Pythagoreans, who live in Italy, are of a contrary opinion. For they say that fire is in the centre, and that the earth, which, according to them, is one of the stars, occasions the change of day and night by its own motion, with which it is carried about the centre." It might be doubtful, upon this passage alone, whether the Pythagorean theory embraced more than the diurnal motion of the earth, but a little farther, we find the following passage: "Some, as we have said, make the earth to be one of the stars: others say that it is placed in the centre of the Universe, and revolves on a central axis."[19] From which, in conjunction with the former extract, it very plainly appears that the Pythagoreans maintained both the diurnal and annual motions of the earth.

Some idea of the supererogatory labour entailed upon astronomers by the adoption of the system which places the earth in the centre, may be formed in a popular manner by observing, in passing through a thickly planted wood, in how complicated a manner the relative positions of the trees appear at each step to be continually changing, and by considering the difficulty with which the laws of their apparent motions could be traced, if we were to attempt to refer these changes to a real motion of the trees instead of the traveller. The apparent complexity in the heavens is still greater than in the case suggested; because, in addition to the earth's motions, with which all the stars appear to be impressed, each of the planets has also a real motion of its own, which of course greatly contributes to perplex and complicate the general appearances. Accordingly the heavens rapidly became, under this system,

"With centric and eccentric scribbled o'er,
Cycle and epicycle, orb in orb;"[20]

crossing and penetrating each other in every direction. Maestlin has given a concise enumeration of the principal orbs which belonged to this theory. After warning the readers that "they are not mere fictions which have nothing to correspond with them out of the imagination, but that they exist really, and bodily in the heavens,"[21] he describes seven principal spheres belonging to each planet, which he classes as Eccentrics, Epicycles, and Concentrepicycles, and explains their use in accounting for the planet's revolutions, motions of the apogee, and nodes, &c. &c. In what manner this multitude of solid and crystalline orbs were secured from injuring or interfering with each other was not very closely inquired into.

The reader will cease to expect any very intelligible explanation of this and numberless other difficulties which belong to this unwieldy machinery when he is introduced to the reasoning by which it was upheld. Gerolamo Fracastoro, who lived in the sixteenth century, writes in the following terms, in his work entitled Homocentrica, (certainly one of the best productions of the day,) in which he endeavours to simplify the necessary apparatus, and to explain all the phenomena (as the title of his book implies) by concentric spheres round the earth. "There are some, not only of the ancients but also among the moderns, who believe that the stars move freely without any such agency; but it is difficult to conceive in what manner they have imbued themselves with this notion, since not only reason, but the very senses, inform us that all the stars are carried round fastened to solid spheres." What ideas Fracastoro entertained of the evidence of the "senses" it is not now easy to guess, but he goes on to give a specimen of the "reasoning" which appeared to him so incontrovertible. "The planets are observed to move one while forwards, then backwards, now to the right, now to the left, quicker and slower by turns; which variety is consistent with a compound structure like that of an animal, which possesses in itself various springs and principles of action, but is totally at variance with our notion of a simple and undecaying substance like the heavens and heavenly bodies. For that which is simple, is altogether single, and singleness is of one only nature, and one nature can be the cause of only one effect; and therefore it is altogether impossible that the stars of themselves should move with such variety of motion. And besides, if the stars move by themselves, they either move in an empty space, or in a fluid medium like the air. But there cannot be such a thing as empty space, and if there were such a medium, the motion of the star would occasion condensation and rarefaction in different parts of it, which is the property of corruptible bodies and where they exist some violent motion is going on; but the heavens are incorruptible and are not susceptible of violent motion, and hence, and from many other similar reasons, any one who is not obstinate may satisfy himself that the stars cannot have any independent motion."

Some persons may perhaps think that arguments of this force are unnecessarily dragged from the obscurity to which they are now for the most part happily consigned; but it is essential, in order to set Galileo's character and merits in their true light, to show how low at this time philosophy had fallen. For we shall form a very inadequate notion of his powers and deserts if we do not contemplate him in the midst of men who, though of undoubted talent and ingenuity, could so far bewilder themselves as to mistake such a string of unmeaning phrases for argument: we must reflect on the difficulty every one experiences in delivering himself from the erroneous impressions of infancy, which will remain stamped upon the imagination in spite of all the efforts of matured reason to erase them, and consider every step of Galileo's course as a triumph over difficulties of a like nature. We ought to be fully penetrated with this feeling before we sit down to the perusal of his works, every line of which will then increase our admiration of the penetrating acuteness of his invention and unswerving accuracy of his judgment. In almost every page we discover an allusion to some new experiment, or the germ of some new theory; and amid all this wonderful fertility it is rarely indeed that we find the exuberance of his imagination seducing him from the rigid path of philosophical induction. This is the more remarkable as he was surrounded by friends and contemporaries of a different temperament and much less cautious disposition. A disadvantageous contrast is occasionally furnished even by the sagacious Bacon, who could so far deviate from the sound principles of inductive philosophy, as to write, for instance, in the following strain, bordering upon the worst manner of the Aristotelians:—"Motion in a circle has no limit, and seems to emanate from the appetite of the body, which moves only for the sake of moving, and that it may follow itself and seek its own embraces, and put in action and enjoy its own nature, and exercise its peculiar operation: on the contrary, motion in a straight line seems transitory, and to move towards a limit of cessation or rest, and that it may reach some point, and then put off its motion."[22] Bacon rejected all the machinery of the primum mobile and the solid spheres, the eccentrics and the epicycles, and carried his dislike of these doctrines so far as to assert that nothing short of their gross absurdity could have driven theorists to the extravagant supposition of the motion of the earth, which, said he, "we know to be most false."[23] Instances of extravagant suppositions and premature generalizations are to be found in almost every page of his other great contemporary, Kepler.

It is with pain that we observe Delambre taking every opportunity, in his admirable History of Astronomy, to undervalue and sneer at Galileo, seemingly for the sake of elevating the character of Kepler, who appears his principal favourite, but whose merit as a philosopher cannot safely be brought into competition with that of his illustrious contemporary. Delambre is especially dissatisfied with Galileo, for taking no notice, in his "System of the World," of the celebrated laws of the planetary motions which Kepler discovered, and which are now inseparably connected with his name. The analysis of Newton and his successors has now identified those apparently mysterious laws with the general phenomena of motion, and has thus entitled them to an attention of which, before that time, they were scarcely worthy; at any rate not more than is at present the empirical law which includes the distances of all the planets from the sun (roughly taken) in one algebraical formula. The observations of Kepler's day were scarcely accurate enough to prove that the relations which he discovered between the distances of the planets from the sun and the periods of their revolutions around him were necessarily to be received as demonstrated truths; and Galileo surely acted most prudently and philosophically in holding himself altogether aloof from Kepler's fanciful devices and numeral concinnities, although, with all the extravagance, they possessed much of the genius of the Platonic reveries, and although it did happen that Galileo, by systematically avoiding them, failed to recognise some important truths. Galileo probably was thinking of those very laws, when he said of Kepler, "He possesses a bold and free genius, perhaps too much so; but his mode of philosophizing is widely different from mine." We shall have further occasion in the sequel to recognise the justice of this remark.

In the treatise on the Sphere which bears Galileo's name, and which, if he be indeed the author of it, was composed during the early part of his residence at Padua, he also adopts the Ptolemaic system, placing the earth immoveable in the centre, and adducing against its motion the usual arguments, which in his subsequent writings he ridicules and refutes. Some doubts have been expressed of its authenticity; but, however this may be, we have it under Galileo's own hand that he taught the Ptolemaic system, in compliance with popular prejudices, for some time after he had privately become a convert to the contrary opinions. In a letter, apparently the first which he wrote to Kepler, dated from Padua, 1597, he says, acknowledging the receipt of Kepler's Mysterium Cosmographicum, "I have as yet read nothing beyond the preface of your book, from which however I catch a glimpse of your meaning, and feel great joy on meeting with so powerful an associate in the pursuit of truth, and consequently such a friend to truth itself, for it is deplorable that there should be so few who care about truth, and who do not persist in their perverse mode of philosophizing; but as this is not the fit time for lamenting the melancholy condition of our times, but for congratulating you on your elegant discoveries in confirmation of the truth, I shall only add a promise to peruse your book dispassionately, and with a conviction that I shall find in it much to admire. This I shall do the more willingly because many years ago I became a convert to the opinions of Copernicus,[24] and by that theory have succeeded in fully explaining many phenomena, which on the contrary hypothesis are altogether inexplicable. I have arranged many arguments and confutations of the opposite opinions, which however I have not yet dared to publish, fearing the fate of our master Copernicus, who, although he has earned immortal fame among a few, yet by an infinite number (for so only can the number of fools be measured) is exploded and derided. If there were many such as you, I would venture to publish my speculations; but, since that is not so, I shall take time to consider of it." This interesting letter was the beginning of the friendship of these two great men, which lasted uninterruptedly till 1632, the date of Kepler's death. That extraordinary genius never omitted an opportunity of testifying his admiration of Galileo, although there were not wanting persons envious of their good understanding, who exerted themselves to provoke coolness and quarrel between them. Thus Brutius writes to Kepler in 1602:[25] "Galileo tells me he has written to you, and has got your book, which however he denied to Magini, and I abused him for praising you with too many qualifications. I know it to be a fact that, both in his lectures, and elsewhere, he is publishing your inventions as his own; but I have taken care, and shall continue to do so, that all this shall redound not to his credit but to yours." The only notice which Kepler took of these repeated insinuations, which appear to have been utterly groundless, was, by renewed expressions of respect and admiration, to testify the value he set upon his friend and fellow-labourer in philosophy.

FOOTNOTES:

[17] Dion Cassius, lib. 37.

[18] The pretended translation by Roberval of an Arabic version of Aristarchus, "De Systemate Mundi," in which the Copernican system is fully developed, is spurious. Menage asserts this in his observations on Diogen. Laert. lib. 8, sec. 85, tom. ii., p. 389. (Ed. Amst. 1692.) The commentary contains many authorities well worth consulting. Delambre, Histoire de l'Astronomie, infers it from its not containing some opinions which Archimedes tells us were held by Aristarchus. A more direct proof may be gathered from the following blunder of the supposed translator. Astronomers had been long aware that the earth in different parts of her orbit is at different distances from the sun. Roberval wished to claim for Aristarchus the credit of having known this, and introduced into his book, not only the mention of the fact, but an explanation of its cause. Accordingly he makes Aristarchus give a reason "why the sun's apogee (or place of greatest distance from the earth) must always be at the north summer solstice." In fact, it was there, or nearly so, in Roberval's time, and he knew not but that it had always been there. It is however moveable, and, when Aristarchus lived, was nearly half way between the solstices and equinoxes. He therefore would hardly have given a reason for the necessity of a phenomenon of which, if he observed anything on the subject, he must have observed the contrary. The change in the obliquity of the earth's axis to the ecliptic was known in the time of Roberval, and he accordingly has introduced the proper value which it had in Aristarchus's time.

[19] De Coelo. lib. 2.

[20] Paradise Lost, b. viii. v. 83.

[21] Itaque tam circulos primi motus quam orbes secundorum mobilium rever in coelesti corpore esse concludimus, &c. Non ergo sunt mera figmenta, quibus extra mentem nihil correspondeat. M. Maestlini, De AstronomiÆ Hypothesibus disputatio. HeidelbergÆ, 1582.

[22] Opuscula Philosophica, Thema Coeli.

[23] "Nobis constat falsissimum esse." De Aug. Scient. lib. iii. c. 3, 1623.

[24] Id autum eÒ libentius faciam, quod in Copernici sententiam multis abhinc annis venerim.—Kepl. EpistolÆ.

[25] Kepleri EpistolÆ.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page