This period of Galileo's lectureship at Padua derives interest from its including the first notice which we find of his having embraced the doctrines of the Copernican astronomy. Most of our readers are aware of the principles of the theory of the celestial motions which Copernicus restored; but the number of those who possess much knowledge of the cumbrous and unwieldy system which it superseded is perhaps more limited. The present is not a fit opportunity to enter into many details respecting it; these will find their proper place in the History of Astronomy: but a brief sketch of its leading principles is necessary to render what follows intelligible. The earth was supposed to be immoveably fixed in the centre of the universe, and immediately surrounding it the atmospheres of air and fire, beyond which the sun, moon, and planets, were thought to be carried round the earth, fixed each to a separate orb or heaven of solid but transparent matter. The order of distance in which they were supposed to be placed with regard to the central earth was as follows: The Moon, Mercury, Venus, The Sun, Mars, Jupiter, and Saturn. It became a question in the ages immediately preceding Copernicus, whether the Sun was not nearer the Earth than Mercury, or at least than Venus; and this question was one on which the astronomical theorists were then chiefly divided. We possess at this time a curious record of a former belief in this arrangement of the Sun and planets, in the order in which the days of the week have been named from them. According to the dreams of Astrology, each planet was supposed to exert its influence in succession, reckoning from the most distant down to the nearest, over each hour of the twenty-four. The planet which was supposed to predominate over the first hour, gave its name to that day. Cycle of the seven planets. The other stars were supposed to be fixed in an outer orb, beyond which were two crystalline spheres, (as they were called,) and on the outside of all, the primum mobile or first moveable, which sphere was supposed to revolve round the earth in twenty-four hours, and by its friction, or rather, as most of the philosophers of that day chose to term it, by the sort of heavenly influence which it exercised on the interior orbs, to carry them round with a similar motion. Hence the diversity of day and night. But beside this principal and general motion, each orb was supposed to have one of its own, which was intended to account for the apparent changes of position of the planets with respect to the fixed stars and to each other. This supposition, however, proving insufficient to account for all the irregularities of motion observed, two hypotheses were introduced.—First, that to each planet belonged several concentric spheres or heavens, casing each other like the coats of an onion, and, secondly, that the centres of these solid spheres, with which the planet revolved, were placed in the circumference of a secondary revolving sphere, the centre of which secondary sphere was situated at the earth. They thus acquired the names of Eccentrics or Epicycles, the latter word signifying a circle upon a circle. The whole art of astronomers was then directed towards inventing and combining different eccentric and epicyclical motions, so as to represent with tolerable fidelity the ever varying phenomena of the heavens. Aristotle had lent his powerful assistance in this, as in other branches of natural philosophy, in enabling the false system to prevail against and obliterate the knowledge of the true, which, as we gather from his own writings, was maintained by some philosophers before his time. Of these ancient opinions, only a few traces now remain, principally preserved in the works of those who were adverse to them. Archimedes says expressly that Aristarchus of Samos, who lived about 300 B. C., taught the immobility of the sun and stars, and that the earth is carried round the central sun. Some idea of the supererogatory labour entailed upon astronomers by the adoption of the system which places the earth in the centre, may be formed in a popular manner by observing, in passing through a thickly planted wood, in how complicated a manner the relative positions of the trees appear at each step to be continually changing, and by considering the difficulty with which the laws of their apparent motions could be traced, if we were to attempt to refer these changes to a real motion of the trees instead of the traveller. The apparent complexity in the heavens is still greater than in the case suggested; because, in addition to the earth's motions, with which all the stars appear to be impressed, each of the planets has also a real motion of its own, which of course greatly contributes to perplex and complicate the general appearances. Accordingly the heavens rapidly became, under this system, "With centric and eccentric scribbled o'er, Cycle and epicycle, orb in orb;" crossing and penetrating each other in every direction. Maestlin has given a concise enumeration of the principal orbs which belonged to this theory. After warning the readers that "they are not mere fictions which have nothing to correspond with them out of the imagination, but that they exist really, and bodily in the heavens," The reader will cease to expect any very intelligible explanation of this and numberless other difficulties which belong to this unwieldy machinery when he is introduced to the reasoning by which it was upheld. Gerolamo Fracastoro, who lived in the sixteenth century, writes in the following terms, in his work entitled Homocentrica, (certainly one of the best productions of the day,) in which he endeavours to simplify the necessary apparatus, and to explain all the phenomena (as the title of his book implies) by concentric spheres round the earth. "There are some, not only of the ancients but also among the moderns, who believe that the stars move freely without any such agency; but it is difficult to conceive in what manner they have imbued themselves with this notion, since not only reason, but the very senses, inform us that all the stars are carried round fastened to solid spheres." What ideas Fracastoro entertained of the evidence of the "senses" it is not now easy to guess, but he goes on to give a specimen of the "reasoning" which appeared to him so incontrovertible. "The planets are observed to move one while forwards, then backwards, now to the right, now to the left, quicker and slower by turns; which variety is consistent with a compound structure like that of an animal, which possesses in itself various springs and principles of action, but is totally at variance with our notion of a simple and undecaying substance like the heavens and heavenly bodies. For that which is simple, is altogether single, and singleness is of one only nature, and one nature can be the cause of only one effect; and therefore it is altogether impossible that the stars of themselves should move with such variety of motion. And besides, if the stars move by themselves, they either move in an empty space, or in a fluid medium like the air. But there cannot be such a thing as empty space, and if there were such a medium, the motion of the star would occasion condensation and rarefaction in different parts of it, which is the property of corruptible bodies and where they exist some violent motion is going on; but the heavens are incorruptible and are not susceptible of violent motion, and hence, and from many other similar reasons, any one who is not obstinate may satisfy himself that the stars cannot have any independent motion." Some persons may perhaps think that arguments of this force are unnecessarily dragged from the obscurity to which they are now for the most part happily consigned; but it is essential, in order to set Galileo's character and merits in their true light, to show how low at this It is with pain that we observe Delambre taking every opportunity, in his admirable History of Astronomy, to undervalue and sneer at Galileo, seemingly for the sake of elevating the character of Kepler, who appears his principal favourite, but whose merit as a philosopher cannot safely be brought into competition with that of his illustrious contemporary. Delambre is especially dissatisfied with Galileo, for taking no notice, in his "System of the World," of the celebrated laws of the planetary motions which Kepler discovered, and which are now inseparably connected with his name. The analysis of Newton and his successors has now identified those apparently mysterious laws with the general phenomena of motion, and has thus entitled them to an attention of which, before that time, they were scarcely worthy; at any rate not more than is at present the empirical law which includes the distances of all the planets from the sun (roughly taken) in one algebraical formula. The observations of Kepler's day were scarcely accurate enough to prove that the relations which he discovered between the distances of the planets from the sun and the periods of their revolutions around him were necessarily to be received as demonstrated truths; and Galileo surely acted most prudently and philosophically in holding himself altogether aloof from Kepler's fanciful devices and numeral concinnities, although, with all the extravagance, they possessed much of the genius of the Platonic reveries, and although it did happen that Galileo, by systematically avoiding them, failed to recognise some important truths. Galileo probably was thinking of those very laws, when he said of Kepler, "He possesses a bold and free genius, perhaps too much so; but his mode of philosophizing is widely different from mine." We shall have further occasion in the sequel to recognise the justice of this remark. In the treatise on the Sphere which bears Galileo's name, and which, if he be indeed the author of it, was composed during the early part of his residence at FOOTNOTES: |