During several years Kepler remained, as he himself forcibly expressed it, begging his bread from the emperor at Prague, and the splendour of his nominal income served only to increase his irritation, at the real neglect under which he nevertheless persevered in his labours. His family was increasing, and he had little wherewith to support them beyond the uncertain proceeds of his writings and nativities. His salary was charged partly on the states of Silesia, partly on the imperial treasury; but it was in vain that repeated orders were procured for the payment of the arrears due to him. The resources of the empire were drained by the constant demands of an engrossing war, and Kepler had not sufficient influence to enforce his claims against those who thought even the smallest sum bestowed upon him ill spent, in fostering profitless speculations. In consequence of this niggardliness, Kepler was forced to postpone the publication of the Rudolphine Tables, which he was engaged in constructing from his own and Tycho Brahe's observations, and applied himself to other works of a less costly description. Among these may be mentioned The direction into which rays of light (as they are usually called) are bent or refracted in passing through the air and other transparent substances or mediums, is discussed in this treatise at great length. Tycho Brahe had been the first astronomer who recognized the necessity of making some allowance on this account in the observed heights of the stars. A long controversy arose on this subject between Tycho Brahe and Rothman, the astronomer at Hesse Cassel, a man of unquestionable talent, but of odd and eccentric habits. Neither was altogether in the right, although Tycho had the advantage in the argument. He failed however to establish the true law of refraction, and Kepler has devoted a chapter to an examination of the same question. It is marked by precisely the same qualities as those appearing so conspicuously in his astronomical writings:—great ingenuity; wonderful perseverance; bad philosophy. That this may not be taken solely upon assertion, some samples of it are subjoined. The writings of the authors of this period are little read or known at the present day; and it is only by copious extracts that any accurate notion can be formed of the nature and value of their labours. The following tedious specimen of Kepler's mode of examining physical phenomena is advisedly selected to contrast with his astronomical researches: though the luck and consequently the fame that attended his divination were widely different on the two occasions, the method pursued was the same. After commenting on the points of difference between Rothman and Tycho Brahe, Kepler proceeds to enumerate his own endeavours to discover the law of refraction. "I did not leave untried whether, by assuming a horizontal refraction according to the density of the medium, the rest would correspond with the sines of the distances from the vertical direction, but calculation proved that it was not so: and indeed there was no occasion to have tried it, for thus the refractions would increase according to the same law in all mediums, which is contradicted by experiment. "The same kind of objection may be brought against the cause of refraction alleged by Alhazen and Vitellion. They say that the light seeks to be compensated for the loss sustained at the oblique impact; so that in proportion as it is enfeebled by striking against the denser medium, in the same degree does it restore its energy by approaching the perpendicular, that it may strike the bottom of the denser medium with greater force; for those impacts are most forcible which are direct. And they add some subtle notions, I know not what, how the motion of obliquely incident light is compounded of a motion perpendicular and a motion parallel to the dense surface, and that this compound motion is not destroyed, but only retarded by meeting the denser medium. illustration "I tried another way of measuring the refraction, which should include the density of the medium and the incidence: for, since a denser medium is the cause of refraction, it seems to be the same thing as if we were to prolong the depth of the medium in which the rays are refracted "Let A be the place of the light, BC the surface of the denser medium, DE its bottom. Let AB, AG, AF be rays falling obliquely, which would arrive at D, I, H, if the medium were uniform. But because it is denser, suppose the bottom to be depressed to KL, determined by this that there is as much of the denser matter contained in the space DC as of the rarer in LC: and thus, on the sinking of the whole bottom DE, the points D, I, H, E will descend vertically to L, M, N, K. Join the points BL, GM, FN, cutting DE in O, P, Q; the refracted rays will be ABO, AGP, AFQ."—"This method is refuted by experiment; it gives the refractions near the perpendicular AC too great in respect of those near the horizon. Whoever has leisure may verify this, either by calculation or compasses. It may be added that the reasoning itself is not very sure-footed, and, whilst seeking to measure other things, scarcely takes in and comprehends itself." This reflection must not be mistaken for the dawn of suspicion that his examination of philosophical questions began not altogether at the right end: it is merely an acknowledgment that he had not yet contrived a theory with which he was quite satisfied before it was disproved by experiment. After some experience of Kepler's miraculous good fortune in seizing truths across the wildest and most absurd theories, it is not easy to keep clear of the opposite feeling of surprise whenever any of his extravagancies fail to discover to him some beautiful law of nature. But we must follow him as he plunges deeper in this unsuccessful inquiry; and the reader must remember, in order fully to appreciate this method of philosophizing, that it is almost certain that Kepler laboured upon every one of the gratuitous suppositions that he makes, until positive experiment satisfied him of their incorrectness. "I go on to other methods. Since density is clearly connected with the cause of the refractions, and refraction itself seems a kind of compression of light, as it were, towards the perpendicular, it occurred to me to examine whether there was the same proportion between the mediums in respect of density and the parts of the bottom illuminated by the light, when let into a vessel, first empty, and afterwards filled with water. This mode branches out into many: for the proportion may be imagined, either in the straight lines, as if one should say that the line EQ, illuminated by refraction, is to EH illuminated directly, as the density of the one medium is to that of the other—Or another may suppose the proportion to be between FC and FH—Or it may be conceived to exist among surfaces, or so that some power of EQ should be to some power of EH in this proportion, or the circles or similar figures described on them. In this manner the proportion of EQ to EP would be double that of EH to EI—Or the proportion may be conceived existing among the solidities of the pyramidal frustums FHEC, FQEC—Or, since the proportion of the mediums involves a threefold consideration, since they have density in length, breadth, and thickness, I proceeded also to examine the cubic proportions among the lines EQ, EH. "I also considered other lines. From any of the points of refraction as G, let a perpendicular GY be dropped upon the bottom. It may become a question whether possibly the triangle IGY, that is, the base IY, is divided by the refracted ray GP, in the proportion of the densities of the mediums. "I have put all these methods here together, because the same remark disproves them all. For, in whatever manner, whether as line, plane, or pyramid, EI observes a given proportion to EP, or the abbreviated line YI to YP, namely, the proportion of the mediums, it is sure that EI, the tangent of the distance of the point A from the vertex, will become infinite, and will, therefore make EP or YP, also infinite. Therefore, IGP, the angle of refraction, will be entirely lost; and, as it approaches the horizon, will gradually become less and less, which is contrary to experiment. "I tried again whether the images are equally removed from their points of refraction, and whether the ratio of the densities measures the least distance. For instance, supposing E to be the image, C the surface of the water, K the bottom, and CE to CK in the proportion of the densities of the mediums. Now, let F, G, B, be three other points of refraction and images at S, T, V, and let CE be equal to FS, GT, and BV. But according to this rule an image E would still be somewhat raised in the perpendicular AK, which is contrary to experiment, not to mention other "Up to this point, therefore, I had followed a nearly blind mode of inquiry, and had trusted to good fortune; but now I opened the other eye, and hit upon a sure method, for I pondered the fact, that the image of a thing seen under water approaches closely to the true ratio of the refraction, and almost measures it; that it is low if the thing is viewed directly from above; that by degrees it rises as the eye passes towards the horizon of the water. Yet, on the other hand, the reason alleged above, proves that the measure is not to be sought in the image, because the image is not a thing actually existing, but arises from a deception of vision which is purely accidental. By a comparison of these conflicting arguments, it occurred to me at length, to seek the causes themselves of the existence of the image under water, and in these causes the measure of the refractions. This opinion was strengthened in me by seeing that opticians had not rightly pointed out the cause of the image which appears both in mirrors and in water. And this was the origin of that labour which I undertook in the third chapter. Nor, indeed, was that labour trifling, whilst hunting down false opinions of all sorts among the principles, in a matter rendered so intricate by the false traditions of optical writers; whilst striking out half a dozen different paths, and beginning anew the whole business. How often did it happen that a rash confidence made me look upon that which I sought with such ardour, as at length discovered! "At length I cut this worse than Gordian knot of catoptrics by analogy alone, by considering what happens in mirrors, and what must happen analogically in water. In mirrors, the image appears at a distance from the real place of the object, not being itself material, but produced solely by reflection at the polished surface. Whence it followed in water also, that the images rise and approach the surface, not according to the law of the greater or less density in the water, as the view is less or more oblique, but solely because of the refraction of the ray of light passing from the object to the eye. On which assumption, it is plain that every attempt I had hitherto made to measure refractions by the image, and its elevation, must fall to the ground. And this became more evident when I discovered the true reason why the image is in the same perpendicular line with the object both in mirrors and in dense mediums. When I had succeeded thus far by analogy in this most difficult investigation, as to the place of the image, I began to follow out the analogy further, led on by the strong desire of measuring refraction. For I wished to get hold of some measure of some sort, no matter how blindly, having no fear but that so soon as the measure should be accurately known, the cause would plainly appear. I went to work as follows. In convex mirrors the image is diminished, and just so in rarer mediums; in denser mediums it is magnified, as in concave mirrors. In convex mirrors the central parts of the image approach, and recede in concave farther than towards the circumference; the same thing happens in different mediums, so that in water the bottom appears depressed, and the surrounding parts elevated. Hence it appears that a denser medium corresponds with a concave reflecting surface, and a rarer one with a convex one: it was clear, at the same time, that the plane surface of the Kepler then endeavoured to connect his measurements of different quantities of refraction with the conic sections, and was tolerably well pleased with some of his results. They were however not entirely satisfactory, on which he breaks off with the following sentence: "Now, reader, you and I have been detained sufficiently long whilst I have been attempting to collect into one faggot the measure of different refractions: I acknowledge that the cause cannot be connected with this mode of measurement: for what is there in common between refractions made at the plane surfaces of transparent mediums, and mixtilinear conic sections? Wherefore, quod Deus bene vortat, we will now have had enough of the causes of this measure; and although, even now, we are perhaps erring something from the truth, yet it is better, by working on, to show our industry, than our laziness by neglect." Notwithstanding the great length of this extract, we must add the concluding paragraph of the Chapter, directed, as we are told in the margin, against the "Tychonomasticks:"— "I know how many blind men at this day dispute about colours, and how they long for some one to give some assistance by argument to their rash insults of Tycho, and attacks upon this whole matter of refractions; who, if they had kept to themselves their puerile errors and naked ignorance, might have escaped censure; for that may happen to many great men. But since they venture forth publicly, and with thick books and sounding titles, lay baits for the applause of the unwary, (for now-a-days there is more danger from the abundance of bad books, than heretofore from the lack of good ones,) therefore let them know that a time is set for them publicly to amend their own errors. If they longer delay doing this, it shall be open, either to me or any other, to do to these unhappy meddlers in geometry as they have taken upon themselves to do with respect to men of the highest reputation. And although this labour will be despicable, from the vile nature of the follies against which it will be directed, yet so much more necessary than that which they have undertaken against others, as he is a greater public nuisance, who endeavours to slander good and necessary inventions, than he who fancies he has found what is impossible to discover. Meanwhile, let them cease to plume themselves on the silence which is another word for their own obscurity." Although Kepler failed, as we have seen, to detect the true law of refraction, (which was discovered some years later by Willibrord Snell, a Flemish mathematician,) there are many things well deserving notice in his investigations. He remarked, that the quantity of refraction would alter, if the height of the atmosphere should vary; and also, that it would be different at different temperatures. Both these sources of variation are now constantly taken into account, the barometer and thermometer giving exact indications of these changes. There is also a very curious passage in one of his letters to Bregger, written in 1605, on the subject of the colours in the rainbow. It is in these words:—"Since every one sees a different rainbow, it is possible that some one may see a rainbow in the very place of my sight. In this case, the medium is coloured at the place of my vision, to which the solar ray comes to me through water, rain, or aqueous vapours. For the rainbow is seen when the sun is shining between rain, that is to say, when the sun also is visible. Why then do I not see the sun green, yellow, red, and blue, if vision takes place according to the mode of illumination? I will say something for you to attack or examine. The sun's rays are not coloured, except with a definite quantity of refraction. Whether you are in the optical chamber, or standing opposite glass globes, or walking in the morning dew, everywhere it is obvious that a certain and definite angle is observed, under which, when seen in dew, in glass, in water, the sun's splendour appears coloured, and under no other angle. There is no colouring by mere reflexion, without the refraction of a denser medium." How closely does Kepler appear, in this passage, to approach the discovery which forms not the least part of Newton's fame! We also find in this work a defence of the opinion that the planets are luminous |