“The greater the sphere of our knowledge, the larger is the surface of its contact with the infinity of our ignorance.” Current modern practice is, however, more liberal in its use of language than either Delambre or Bessel, and finds it convenient to recognise all three of the subjects or groups of subjects referred to as integral parts of one science. The mutual relation of gravitational astronomy and what has been for convenience called observational astronomy has been already referred to (chapter X., §196). It should, however, be noticed that the latter term has in this book hitherto been used chiefly for only one part of the astrono Descriptive astronomy, on the other hand, which can be regarded as being almost as much the creation of Herschel as gravitational astronomy is of Newton, has not only been greatly developed on the lines laid down by its founder, but has received—chiefly through the invention of spectrum analysis (§299)—extensions into regions not only unthought of but barely imaginable a century ago. Most of the results of descriptive astronomy—unlike those of the older branches of the subject—are readily intelligible and fairly interesting to those who have but little knowledge of the subject; in particular they are as yet to a considerable extent independent of the mathematical ideas and language Accordingly, while the successors of Laplace and Bradley have been for the most part astronomers by profession, attached to public observatories or to universities, an immense mass of valuable descriptive work has been done by amateurs who, like Herschel in the earlier part of his career, have had to devote a large part of their energies to professional work of other kinds, and who, though in some cases provided with the best of instruments, have in many others been furnished with only a slender instrumental outfit. For these and other reasons one of the most notable features of nineteenth century astronomy has been a great development, particularly in this country and in the United States, of general interest in the subject, and the establishment of a large number of private observatories devoted almost entirely to the study of special branches of descriptive astronomy. The nineteenth century has accordingly witnessed the acquisition of an unprecedented amount of detailed astronomical knowledge. But the wealth of material thus accumulated has outrun our powers of interpretation, and in a number of cases our knowledge of some particular department of descriptive astronomy consists, on the one hand of an immense series of careful observations, and on the other of one or more highly speculative theories, seldom capable of explaining more than a small portion of the observed facts. In dealing with the progress of modern descriptive astronomy the proverbial difficulty of seeing the wood on account of the trees is therefore unusually great. To give an account within the limits of a single chapter of even the most important facts added to our knowledge would be a hopeless endeavour; fortunately it would also be superfluous, as they are to be found in many easily accessible textbooks on astronomy, or in treatises on special parts of the subject. All that can be attempted is to give some account of the chief lines on which progress has been made, and to A number of other parallax determinations have subsequently been made. An interesting variation in method was made by the late Professor Charles Pritchard (1808-1893) of Oxford by photographing the star to be examined and its companions, and subsequently measuring the distances on the photograph, instead of measuring the angular distances directly with a micrometer. At the present time some 50 stars have been ascertained with some reasonable degree of probability to have measurable, if rather uncertain, parallaxes; a Centauri still holds its own as the nearest star, the light-journey from it being about four years. A considerable number of other stars have been examined with negative or highly uncertain results, indicating that their parallaxes are too small to be measured with our present means, and that their distances are correspondingly great. The greatest scheme for a survey of the sky yet attempted is the photographic chart, together with a less extensive catalogue to be based on it, the construction of which was decided on at an international congress held at Paris in 1887. The whole sky has been divided between 18 observatories in all parts of the world, from Helsingfors in the north to Melbourne in the south, and each of these is now taking photographs with virtually identical instruments. It is estimated that the complete chart, which is intended to include stars of the 14th magnitude,162 will contain about 20,000,000 stars, 2,000,000 of which will be catalogued also. The transits of Venus (chapter X., §§202, 227) which occurred in 1874 and 1882 were both extensively observed, The method of finding the distance of the sun by means of observation of Mars in opposition (chapter VIII., §161) has been employed on several occasions with considerable success, notably by Dr. Gill at Ascension in 1877. A method originally used by Flamsteed, but revived in 1857 by Sir George Biddell Airy (1801-1892), the late Astronomer Royal, was adopted on this occasion. For the determination of the parallax of a planet observations have to be made from two different positions at a known distance apart; commonly these are taken to be at two different observatories, as far as possible removed from one another in latitude. Airy pointed out that the same object could be attained if only one observatory were used, but observations taken at an interval of some hours, as the rotation of the earth on its axis would in that time produce a known displacement of the observer’s position and so provide the necessary base line. The apparent shift of the planet’s position could be most easily ascertained by measuring (with the micrometer) its distances from neighbouring fixed stars. This method (known as the diurnal method) has the great advantage, among others, of being simple in application, a single observer and instrument being all that is needed. The diurnal method has also been applied with great success to certain of the minor planets (§294). Revolving as they do between Mars and Jupiter, they are all farther off from us than the former; but there is the compensating advantage that as a minor planet, unlike Mars, is, as a rule, too small to shew any appreciable disc, its angular distance from a neighbouring star is more easily measured. The employment of the minor planets in this way was first suggested by Professor Galle of Berlin in 1872, and recent observations of the minor planets Victoria, Sappho, and Iris in 1888-89, made at a number of observatories under the general direction of Dr. Gill, have led to some of the most satisfactory determinations of the sun’s distance. Again, certain changes in the orbits of our two neighbours, Venus and Mars, are known to depend upon the ratio of the masses of the sun and earth, and can hence be connected, by gravitational principles, with the quantity sought. Leverrier pointed out in 1861 that the motions of Venus and of Mars, like that of the moon, were inconsistent with the received estimate of the sun’s distance, and he subsequently worked out the method more completely and deduced (1872) values of the parallax. The displacements to be observed are very minute, and their accurate determination is by no means easy, but they are both secular (chapter XI., §242), so that in the course of time they will be capable of very exact measurement. Leverrier’s method, which is even now a valuable one, must therefore almost inevitably outstrip all the others which are at present known; it is difficult to imagine, for example, that the transits of Venus due in 2004 and 2012 will have any value for the purpose of the determination of the sun’s distance. New methods have been devised since, and three comparatively recent series of experiments, by M. Cornu in France (1874 and 1876) and by Dr. Michelson (1879) and Professor Newcomb (1880-82) in the United States, agreeing closely with one another, combine to fix the velocity of light at very nearly 186,300 miles (299,800 kilometres) per second; the solar parallax resulting from this by means of aberration is very nearly 8·8.163 Dr. S. C. Chandler succeeded (1891 and subsequently) in shewing that the observations in question could be in great part explained by supposing the earth’s axis to undergo a minute change of position in such a way that either pole of the earth describes a circuit round its mean position in about 427 days, never deviating more than some 30 feet from it. It is well known from dynamical theory that a rotating body such as the earth can be displaced in this manner, but that if the earth were perfectly rigid the period should be 306 days instead of 427. The discrepancy between the two numbers has been ingeniously used as a test of the extent to which the earth is capable of yielding—like an elastic solid—to the various forces which tend to strain it. Laplace’s treatment of the lunar theory was first developed by Marie Charles Theodore Damoiseau (1768-1846), whose Some special problems of both lunar and planetary theory were dealt with by SimÉon Denis Poisson (1781-1840), who is, however, better known as a writer on other branches of mathematical physics than as an astronomer. A very elaborate and detailed theory of the moon, investigated by the general methods of Laplace, was published by Giovanni Antonio Amadeo Plana (1781-1869) in 1832, but unaccompanied by tables. A general treatment of both lunar and planetary theories, the most complete that had appeared up to that time, by Philippe Gustave Doulcet de PontÉcoulant (1795-1874), appeared in 1846, with the title ThÉorie Analytique du SystÈme du Monde; and an incomplete lunar theory similar to his was published by John William Lubbock (1803-1865) in 1830-34. A great advance in lunar theory was made by Peter Andreas Hansen (1795-1874) of Gotha, who published in 1838 and 1862-64 the treatises commonly known respectively as the Fundamenta164 and the Darlegung,165 and produced in 1857 tables of the moon’s motion of such accuracy that the discrepancies between the tables and observations in the century 1750-1850 were never greater than 1 or 2. These tables were at once used for the calculation of the Nautical Almanac and other periodicals of the same kind, and with some modifications have remained in use up to the present day. A completely new lunar theory—of great mathematical interest and of equal complexity—was published by Charles Delaunay (1816-1872) in 1860 and 1867. Unfortunately the author died before he was able to work out the corresponding tables. Professor Newcomb of Washington (§283) has rendered valuable services to lunar theory—as to other branches of astronomy—by a number of delicate and intricate calculations, the best known being his comparison of Hansen’s tables with observation and consequent corrections of the tables. New methods of dealing with lunar theory were devised by the late Professor John Couch Adams of Cambridge (1819-1892), and similar methods have been developed by Dr. G. W. Hill of Washington; so far they have not been worked out in detail in such a way as to be available for the calculation of tables, and their interest seems to be at present mathematical rather than practical; but the necessary detailed work is now in progress, and these and allied methods may be expected to lead to a considerable diminution of the present excessive intricacy of lunar theory. Researches of a more abstract character, connecting planetary theory with some of the most recent advances When the first attempts were made to compute its orbit carefully, it was found impossible satisfactorily to reconcile the earlier with the later observations, and in Bouvard’s tables (chapter XI., §247, note) published in 1821 the earlier observations were rejected. But even this drastic measure did not cure the evil; discrepancies between the observed and calculated places soon appeared and increased year by year. Several explanations were proposed, and more than one astronomer threw out the suggestion that the irregularities might be due to the attraction of a hitherto unknown planet. The first serious attempt to deduce from the irregularities in the motion of Uranus the position of this hypothetical body was made by Adams immediately after taking his degree (1843). By October 1845 he had succeeded in constructing an orbit for the new planet, and in assigning for it a position differing (as we now know) by less than 2° (four times the diameter of the full moon) from its actual position. No telescopic search for it was, however, undertaken. Meanwhile, Leverrier had independently taken up the inquiry, and by August 31st, 1846, he, like Adams, had succeeded in determining the orbit and the position of the disturbing body. On the 23rd of the follow It may be worth while noticing that the error in the motion of Uranus which led to this remarkable discovery never exceeded 2', a quantity imperceptible to the ordinary eye; so that if two stars were side by side in the sky, one in the true position of Uranus and one in the calculated position as given by Bouvard’s tables, an observer of ordinary eyesight would see one star only. The two most striking cases are perhaps those of Mercury and the moon. Leverrier’s explanation of the irregularities of the former (§288) has never been fully justified or generally accepted; and the position of the moon as given in the Nautical Almanac and in similar publications is calculated by means of certain corrections to Hansen’s tables which were deduced by Professor Newcomb from observation and have no justification in the theory of gravitation. Of late years a good deal of attention has been paid to the effect of the attraction of the sun and moon in producing alterations—analogous to oceanic tides—in the earth itself. No body is perfectly rigid, and the forces in question must therefore produce some tidal effect. The problem was first investigated by Lord Kelvin in 1863, subsequently by Professor Darwin and others. Although definite numerical results are hardly attainable as yet, the work so far carried out points to the comparative smallness of these bodily tides and the consequent great rigidity of the earth, a result of interest in connection with geological inquiries into the nature of the interior of the earth. Some speculations connected with tidal friction are referred to elsewhere (§320). In the case of the particular propositions in question the progress of astronomy and physics has thrown a good deal of emphasis on some of the points in which the assumptions required by Lagrange and Laplace are not satisfied by the actual solar system. It was assumed for the purposes of the stability theorems that the bodies of the solar system are perfectly rigid; in other words, the motions relative to one another of the parts of any one body were ignored. Both the ordinary tides of the ocean and the bodily tides to which modern research has called attention were therefore left out of account. Tidal friction, though at present very minute in amount (§287), differs essentially from the perturbations which form the main subject-matter of gravitational astronomy, inasmuch as its action is irreversible. The stability theorems shewed in effect that the ordinary perturbations produced effects which sooner or later compensated one another, so that if a particular motion was accelerated at one time it would be retarded at another; but this is not the case with tidal friction. Tidal action between the earth and the moon, for example, gradually lengthens both the day and the month, and increases the distance between the earth and the moon. Solar tidal action has a similar though smaller effect on the sun and earth. The effect in each case—as far as we can measure it at all—seems to be minute almost beyond imagination, but there is no compensating action tending at any time to reverse the process. And on the whole the energy of the bodies concerned is thereby lessened. Again, modern theories of light and electricity require space to be filled with an “ether” capable of transmitting certain waves; and although there is no direct evidence that it in any way affects the motions of earth or planets, it is difficult to imagine a medium so different from all known forms of ordinary matter as to offer no resistance to a body moving through it. Such resistance would have the effect of slowly bringing the members of the solar system nearer to the sun, and gradually diminishing their times of revolution round In fact, from the point of view which Lagrange and Laplace occupied, the solar system appeared like a clock which, though not going quite regularly, but occasionally gaining and occasionally losing, nevertheless required no winding up; whereas modern research emphasises the analogy to a clock which after all is running down, though at an excessively slow rate. Modern study of the sun’s heat (§319) also indicates an irreversible tendency towards the “running down” of the solar system in another way. The first day of the 19th century was marked by the discovery of a new planet, known as Ceres. It was seen by Giuseppe Piazzi (1746-1826) as a strange star in a region of the sky which he was engaged in mapping, and soon recognised by its motion as a planet. Its orbit—first calculated by Gauss (§276)—shewed it to belong to the space between Mars and Jupiter, which had been noted since the time of Kepler as abnormally large. That a planet should be found in this region was therefore no great surprise; but the discovery by Heinrich Olbers (1758-1840), scarcely a year later (March 1802), of a second body (Pallas), revolving at nearly the same distance from the sun, was wholly unexpected, and revealed an entirely new planetary arrangement. It was an obvious conjecture that if there was room for two planets there was room for more, and two fresh discoveries (Juno in 1804, Vesta in 1807) soon followed. The new bodies were very much smaller than any of the other planets, and, so far from readily shewing a planetary disc like their neighbours Mars and Jupiter, were barely distinguishable in appearance from fixed stars, except in the most powerful telescopes of the time; hence the name asteroid (suggested by William Herschel) or minor planet has been generally employed to distinguish them from the other planets. Herschel attempted to measure their size, and estimated the diameter of the largest at under 200 miles (that of Mercury, the smallest of the ordinary planets, being 3000), but the problem was in reality The four minor planets named were for nearly 40 years the only ones known; then a fifth was discovered in 1845 by Karl Ludwig Hencke (1793-1866) after 15 years, of search. Two more were found in 1847, another in 1848, and the number has gone on steadily increasing ever since. The process of discovery has been very much facilitated by improvements in star maps, and latterly by the introduction of photography. In this last method, first used by Dr. Max Wolf of Heidelberg in 1891, a photographic plate is exposed for some hours; any planet present in the region of the sky photographed, having moved sensibly relatively to the stars in this period, is thus detected by the trail which its image leaves on the plate. The annexed figure shews (near the centre) the trail of the minor planet Svea, discovered by Dr. Wolf on March 21st, 1892. At the end of 1897 no less than 432 minor planets were known, of which 92 had been discovered by a single observer, M. Charlois of Nice, and only nine less by Professor Palisa of Vienna. The paths of the minor planets practically occupy the whole region between the paths of Mars and Jupiter, though few are near the boundaries; no orbit is more inclined to the ecliptic than that of Pallas, and the eccentricities range from almost zero up to about 1/3. Fig. 89 shews the orbits of the first two minor planets discovered, as well as of No. 323 (Brucia), which comes nearest to the sun, and of No. 361 (not yet named), Estimates of the sizes and masses of the minor planets are still very uncertain. The first direct measurement Leverrier calculated from the perturbations of Mars that the total mass of all known or unknown bodies between Mars and Jupiter could not exceed a fourth that of the earth; but such knowledge of the sizes as we can derive from Barely a fortnight after the discovery of Neptune (1846) a satellite was detected by William Lassell (1799-1880) at Liverpool. Like the satellites of Uranus, this revolves round its primary from east to west—that is, in the direction contrary to that of all the other known motions of the solar system (certain long-period comets not being counted). Two years later (September 16th, 1848) William Cranch Bond (1789-1859) discovered, at the Harvard College Astronomers are naturally most familiar with the surface The visible surfaces of Jupiter and Saturn appear to be layers of clouds; the low density of each planet (1·3 and ·7 respectively, that of water being 1 and of the earth 5·5), the rapid changes on the surface, and other facts indicate that these planets are to a great extent in a fluid condition, and have a high temperature at a very moderate distance Laplace had shewn that Saturn’s ring (or rings) could not be, as it appeared, a uniform solid body; he rashly inferred—without any complete investigation—that it might be an irregularly weighted solid body. The first important advance was made by James Clerk Maxwell (1831-1879), best known as a writer on electricity and other branches of physics. Maxwell shewed (1857) that the rings could neither be continuous solid bodies nor liquid, but that all the important dynamical conditions would be satisfied if they were made up of a very large number of small solid bodies revolving independently round the sun.167 The theory thus suggested on mathematical grounds has received a good deal of support from telescopic evidence. The rings thus bear to Saturn a relation having some analogy to that which the minor planets bear to the sun; and Kirkwood pointed out in 1867 that Cassini’s division between the two main rings can be explained by the perturbations due to certain of the satellites, just as the corresponding gaps in the minor planets can be explained by the action of Jupiter (§294). The great distance of Uranus and Neptune naturally makes the study of them difficult, and next to nothing is known of the appearance or constitution of either; their rotation periods are wholly uncertain. Mercury and Venus, being inferior planets, are never very far from the sun in the sky, and therefore also extremely difficult to observe satisfactorily. Various bright and dark markings on their surfaces have been recorded, but different observers give very different accounts of them. The rotation periods are also very uncertain, though a good many astronomers support the view put forward by Sig. Schiaparelli, in 1882 and 1890 for Mercury and Venus respectively, that each rotates in a time equal to its period of revolution round the sun, and thus always turns the same face towards the sun. Such a motion—which is analogous to that of the Earlier records and later observations have confirmed the general result, the period being now estimated as slightly over 11 years on the average, though subject to considerable fluctuations. A year later (1852) three independent investigators, Sir Edward Sabine (1788-1883) in England, Rudolf Wolf (1816-1893) and Alfred Gautier (1793-1881) in Switzerland, called attention to the remarkable similarity between the periodic variations of sun-spots and of various magnetic disturbances on the earth. Not only is the period the same, but it almost invariably happens that when spots are most numerous on the sun magnetic disturbances are most noticeable on the earth, and that similarly the times of scarcity of the two sets of phenomena coincide. This wholly unexpected and hitherto quite unexplained relationship has been confirmed by the occurrence on several occasions of decided magnetic disturbances simultaneously with rapid changes on the surface of the sun. A long series of observations of the position of spots on the sun undertaken by Richard Christopher Carrington (1826-1875) led to the first clear recognition of the difference in the rate of rotation of the different parts of the surface of the sun, the period of rotation being fixed (1859) at about 25 days at the equator, and two and a half days longer half-way between the equator and the poles; while Wilson’s theory (chapter XII., §268) that spots are depressions was confirmed by an extensive series of photographs taken at Kew in 1858-72, shewing a large preponderance of cases of the perspective effect noticed by him; but, on the other hand, Mr. F. Howlett, who has watched the sun for some 35 years and made several thousand drawings of spots, considers (1894) that his observations are decidedly against Wilson’s theory. Other observers are divided in opinion. It was first clearly established by Newton, in 1665-66 (chapter IX., §168), that ordinary white light, such as sunlight, is composite, and that by passing a beam of sunlight—with proper precautions—through a glass prism it can be decomposed into light of different colours; if the beam so decomposed is received on a screen, it produces a band of colours known as a spectrum, red being at one end and violet at the other. Now according to modern theories light consists essentially of a series of disturbances or waves transmitted at extremely short but regular intervals from the luminous object to the eye, the medium through which the disturbances travel being called ether. The most important characteristic distinguishing different kinds of light is the interval of time or space between one wave and the next, which is generally expressed by means of wave-length, or the distance between any point of one wave and the corresponding point of the next. Differences in wave-length shew themselves most readily as differences of colour; so The solar spectrum appeared to Newton as a continuous band of colours; but in 1802 William Hyde Wollaston (1766-1828) observed certain dark lines running across the spectrum, which he took to be the boundaries of the natural colours. A few years later (1814-15) the great Munich optician Joseph Fraunhofer (1787-1826) examined the sun’s spectrum much more carefully, and discovered about 600 such dark lines, the positions of 324 of which he mapped (see fig. 97). These dark lines are accordingly known as Fraunhofer lines: for purposes of identification Fraunhofer attached certain letters of the alphabet to a few of the most conspicuous; the rest are now generally known by the wave-length of the corresponding kind of light. It was also gradually discovered that dark bands could be produced artificially in spectra by passing light through various coloured substances; and that, on the other hand, the spectra of certain flames were crossed by various bright lines. Several attempts were made to explain and to connect these various observations, but the first satisfactory and tolerably complete explanation was given in 1859 by Gustav Kirchhoff shewed that a luminous solid or liquid—or, as we now know, a highly compressed gas—gives a continuous spectrum; whereas a substance in the gaseous state gives a spectrum consisting of bright lines (with or without a faint continuous spectrum), and these bright lines depend on the particular substance and are characteristic of it. Consequently the presence of a particular substance in the form of gas in a hot body can be inferred from the presence of its characteristic lines in the spectrum of the light. The dark lines in the solar spectrum were explained by the fundamental principle—often known as Kirchhoff’s law—that a body’s capacity for stopping or absorbing light of a particular wave-length is proportional to its power, under like conditions, of giving out the same light. If, in particular, light from a luminous solid or liquid body, giving a continuous spectrum, passes through a gas, the gas absorbs light of the same wave-length as that which it itself gives out: if the gas gives out more light of these particular wave-lengths than it absorbs, then the spectrum is crossed by the corresponding bright lines; but if it absorbs more than it gives out, then there is a deficiency of light of these wave-lengths and the corresponding parts of the spectrum appear dark—that is, the spectrum is crossed by dark lines in the same position as the bright lines in the spectrum of the gas alone. Whether the gas absorbs more or less than it gives out is essentially a question of temperature, so that if light from a hot solid or liquid passes through a gas at a higher temperature a spectrum crossed by bright lines is the result, whereas if the gas is cooler than the body behind it dark lines are seen in the spectrum. For example, the metal sodium when vaporised gives a spectrum characterised by two nearly coincident bright lines in the yellow part of the spectrum; these agree in position with a pair of dark lines (known as D) in the spectrum of the sun (see fig. 97); Kirchhoff inferred therefore that the atmosphere of the sun contains sodium. By comparison of the dark lines in the spectrum of the sun with the bright lines in the spectra of metals and other substances, their presence or absence in the solar atmosphere can accordingly be ascertained. In the case of iron—which has an extremely complicated spectrum—Kirchhoff succeeded in identifying 60 lines (since increased to more than 2,000) in its spectrum with dark lines in the spectrum of the sun. Some half-dozen other known elements were also identified by Kirchhoff in the sun. The inquiry into solar chemistry thus started has since been prosecuted with great zeal. Improved methods and increased care have led to the construction of a series of maps of the solar spectrum, beginning with Kirchhoff’s own, published in 1861-62, of constantly increasing complexity and accuracy. Knowledge of the spectra of the metals has also been greatly extended. At the present time between 30 and 40 elements have been identified in the sun, the most interesting besides those already mentioned being hydrogen, calcium, magnesium, and carbon. The first spectroscopic work on the sun dealt only with the light received from the sun as a whole, but it was soon seen that by throwing an image of the sun on to the slit of the spectroscope by means of a telescope the spectrum of a particular part of the sun’s surface, such as a spot or a facula, could be obtained; and an immense number of observations of this character have been made. The most important lines ordinarily present in the spectrum of the chromosphere are those of hydrogen, two lines (H and K) which have been identified with some difficulty as belonging to calcium, and a yellow line the substance producing which, known as helium, has only recently (1895) been discovered on the earth. But the chromosphere when disturbed and many of the prominences give spectra containing a number of other lines. The corona was for some time regarded as of the nature of an optical illusion produced in the atmosphere. That it is, at any rate in great part, an actual appendage of the sun was first established in 1869 by the American astronomers The corona has been carefully studied at every solar eclipse during the last 30 years, both with the spectroscope and with the telescope, supplemented by photography, and a number of ingenious theories of its constitution have been propounded; but our present knowledge of its nature hardly goes beyond Professor Young’s description of it as “an inconceivably attenuated cloud of gas, fog, and dust, surrounding the sun, formed and shaped by solar forces.” Some of the earliest observations of the prominences by Sir J. N. Lockyer (1868), and of spots and other features of the sun by the same and other observers, shewed displacements and distortions of the lines in the spectrum, which were soon seen to be capable of interpretation by this method, and pointed to the existence of violent disturbances in the atmosphere of the sun, velocities as great as 300 miles per second being not unknown. The method has received an interesting confirmation from observations of the spectrum of opposite edges of the sun’s disc, of which one is approaching and the other receding owing to the rotation of the sun. Professor DunÉr of Upsala has by this process ascertained (1887-89) the rate of rotation of the surface of the sun beyond the regions where spots exist, and therefore outside the limits of observations such as Carrington’s (§298). Independent lines of inquiry point to the extremely unsubstantial character of a comet, with the possible exception of the bright central part or nucleus, which is nearly always present. More than once, as in 1767 (chapter XI., §248), a comet has passed close to some member of the solar system, and has never been ascertained to affect its motion. The mass of a comet is therefore very small, but its bulk or volume, on the other hand, is in general very great, the tail often being millions of miles in length; so that the density must be extremely small. Again, stars have often been observed shining through a comet’s tail (as shewn in fig. 99), and even through the head at no great distance from the nucleus, their brightness being only slightly, if at all, affected. Twice at least (1819, 1861) the earth has passed through a comet’s tail, but we were so little affected that the fact was only discovered by calculations made after the event. The early observation (chapter III., §69) that a comet’s tail points away from the sun has been abundantly verified; and from this it follows that very rapid changes in the position of the tail must occur in some cases. For example, the comet of 1843 passed very close to the sun at such a rate that in about two hours it had passed from one side of the sun to the opposite; it was then much too near the sun to be seen, but if it followed the ordinary law its tail, which was unusually long, must have entirely reversed its direction within this short time. It is difficult to avoid the inference that the tail is not a permanent part of the comet, but is a stream of matter driven off from it in some way by the action of the sun, and in this respect comparable with the smoke The first application of the spectroscope to the study of comets was made in 1864 by Giambattista Donati (1826-1873), best known as the discoverer of the magnificent comet of 1858. A spectrum of three bright bands, wider than the ordinary “lines,” was obtained, but they were not then identified. Four years later Sir William Huggins obtained a similar spectrum, and identified it with that of a compound of carbon and hydrogen. Nearly every comet examined since then has shewn in its spectrum bright bands indicating the presence of the same or some other hydrocarbon, but in a few cases other substances have also been detected. A comet is therefore in part at least self-luminous, and some of the light which it sends us is that of a glowing gas. It also shines to a considerable extent by reflected sunlight; there is nearly always a con Biela’s comet is not the only comet which has shewn signs of breaking up; Brooks’s comet of 1889, which is probably identical with Lexell’s (chapter XI., §248), was found to be accompanied by three smaller companions; as this comet has more than once passed extremely close to Jupiter, a plausible explanation of its breaking up is at once given in the attractive force of the planet. Moreover Evidence of such different kinds points to an intimate connection between comets and meteors, though it is perhaps still premature to state confidently that meteors are fragments of decayed comets, or that conversely comets are swarms of meteors. William Herschel’s most direct successor was his son John Frederick William (1792-1871), who was not only an astronomer, but also made contributions of importance to pure mathematics, to physics, to the nascent art of photography, and to the philosophy of scientific discovery. He began his astronomical career about 1816 by re-measuring, first alone, then in conjunction with James South (1785-1867), a number of his father’s double stars. The first result of this work was a catalogue, with detailed measurements, of some hundred double and multiple stars (published in 1824), which formed a valuable third term of comparison with his father’s observations of 1781-82 and 1802-03, and confirmed in several cases the slow motions of revolution the beginnings of which had been observed before. A great survey of nebulae followed, resulting in a catalogue [To face p. 397. An important investigation of a somewhat different character—that of the amount of heat received from the sun—was also carried out (1837) during Herschel’s residence at the Cape; and the result agreed satisfactorily with that of an independent inquiry made at the same time in France by Claude Servais Mathias Pouillet (1791-1868). In both cases the heat received on a given area of the earth in a given time from direct sunshine was measured; and allowance being made for the heat stopped in the atmosphere as the sun’s rays passed through it, an estimate was formed of the total amount of heat received annually by the earth from the sun, and hence of the total amount radiated by the sun in all directions, an insignificant fraction of which (one part in 2,000,000,000) is alone intercepted by the earth. But the allowance for the heat intercepted in our atmosphere was necessarily uncertain, and later work, in particular that of Dr. S. P. Langley in 1880-81, shews that it was very much under-estimated by both Herschel and Pouillet. According to Herschel’s results, the heat received annually from the sun—including that intercepted in the In addition to a number of minor papers Struve published three separate books on the subject in 1827, 1837, and 1852.170 A comparison of his own earlier and later observations, and of both with Herschel’s earlier ones, shewed about 100 cases of change of relative positions of two members of a pair, which indicated more or less clearly a motion of revolution, and further results of a like character have been obtained from a comparison of Struve’s observations with those of later observers. William Herschel’s observations of binary systems (chapter XII., §264) only sufficed to shew that a motion of revolution of some kind appeared to be taking place; it was an obvious conjecture that the two members of a pair Many thousand double stars have been discovered by the Herschels, Struve, and a number of other observers, including several living astronomers, among whom Professor S. W. Burnham of Chicago, who has discovered some 1300, holds a leading place. Among these stars there are about 300 which we have fair reason to regard as binary, but not more than 40 or 50 of the orbits can be regarded as at all satisfactorily known. One of the most satisfactory is that of Savary’s star ? Ursae, which is shewn in fig. 101. Apart from the binaries discovered by the spectroscopic method (§314), which form to some extent a distinct class, the periods of revolution which have been computed range between about ten years and several centuries, the longer periods being for the most part decidedly uncertain. The first spectrum of a nebula was obtained by Sir William Huggins in 1864, and was seen to consist of three bright lines; by 1868 he had examined 70, and found in about one-third of the cases, including that of the Orion nebula, a similar spectrum of bright lines. In these cases therefore the luminous part of the nebula is gaseous, and Herschel’s suggestion of a “shining fluid” was confirmed in the most satisfactory way. In nearly all cases three bright lines are seen, one of which is a hydrogen line, while the other two have not been identified, and in the case of a few of the brighter nebulae some other lines have also been seen. On the other hand, a considerable number of nebulae, including many of those which appear capable of telescopic resolution into star clusters, give a continuous spectrum, so that there is no clear spectroscopic evidence to distinguish them from clusters of stars, since the dark lines seen usually in the spectra of the latter could hardly be expected to be visible in the case of such faint objects as nebulae. Many of the dark lines in the spectra of stars have been identified, first by Sir William Huggins in 1864, with the lines of known terrestrial elements, such as hydrogen, iron, sodium, calcium; so that a certain identity between the materials of which our own earth is made and that of bodies so remote as the fixed stars is thus established. In addition to the classes of stars already mentioned, the spectroscope has shewn the existence of an extremely interesting if rather perplexing class of stars, falling into several subdivisions, which seem to form a connecting link between ordinary stars and nebulae, for, though indistinguishable telescopically from ordinary stars, their spectra shew bright lines either periodically or regularly. A good many stars of this class are variable, and several “new” stars which have appeared and faded away of late years have shewn similar characteristics. A number of other cases of both classes of spectroscopic binary stars (as they may conveniently be called) have since been discovered. The upper part of fig. 103 shews the doubling of one of the lines in the spectrum of the double star Aurigae; and the lower part shews the corresponding part of the spectrum at a time when the line appeared single. Most of the great star catalogues (§280) have included estimates of the magnitudes of stars. The most extensive and accurate series of measurements of star brightness have been those executed at Harvard and at Oxford under the superintendence of Professor E. C. Pickering and the late Professor Pritchard respectively. Both catalogues deal with stars visible to the naked eye; the Harvard catalogue (published in 1884) comprises 4,260 stars between the North Pole and 30° southern declination, and the Uranometria Nova Oxoniensis (1885), as it is called, only goes 10° south of the equator and includes 2,784 stars. Portions of more extensive catalogues dealing with fainter stars, in progress at Harvard and at Potsdam, have also been published. A good many converging lines of evidence thus point to a greater variety in the arrangement, size, and structure of the bodies with which the telescope makes us acquainted than seemed probable when sidereal astronomy was first seriously studied; they also indicate the probability that these bodies should be regarded as belonging to a single system, even if it be of almost inconceivable complexity, rather than to a number of perfectly distinct systems of a simpler type. The results obtained by John Herschel and Pouillet in 1836 (§307) called attention to the enormous expenditure of the sun in the form of heat, and astronomers thus had to face the problem of explaining how the sun was able to go on radiating heat and light in this way. Neither in the few thousand years of the past covered by historic records, nor in the enormously great periods of which geologists and biologists take account, is there any evidence of any important permanent alteration in the amount of heat and light received annually by the earth from the sun. Any theory of the sun’s heat must therefore be able to account for the continual expenditure of heat at something like the present rate for an immense period of time. The obvious explanation of the sun as a furnace deriving its heat from combustion is found to be totally inadequate when put to the test of figures, as the sun could in this way be kept going at most for a few thousand years. The explanation now generally accepted was first given by the great German physicist Hermann von Helmholtz (1821-1894) in a popular lecture in 1854. The sun possesses an immense store of energy in the form of the mutual gravitation of its parts; if from any cause it shrinks, a certain amount of gravitational energy is necessarily lost and takes some other form. In the shrinkage of the sun we have therefore a possible source of energy. The precise amount of energy liberated by a definite amount of shrinkage of the sun depends upon No other cause that has been suggested is competent to account for more than a small fraction of the actual heat-expenditure of the sun; the gravitational theory satisfies all the requirements of astronomy proper, and goes at any rate some way towards meeting the demands of biology and geology. If then we accept it as provisionally established, we are led to the conclusion that the sun was in the past larger and less condensed than now, and by going sufficiently far back into the past we find it in a condition not unlike the primitive nebula which Laplace presupposed, with the exception that it need not have been hot. Professor Darwin has also examined the possibility of explaining in a similar way the formation of the satellites of the other planets and of the planets themselves from the sun, but the circumstances of the moon-earth system turn out to be exceptional, and tidal influence has been less effective in other cases, though it gives a satisfactory explanation of certain peculiarities of the planets and their satellites. More recently (1892) Dr. See has applied a somewhat similar line of reasoning to explain by means of tidal action the development of double stars from an earlier nebulous condition. Speaking generally, we may say that the outcome of the 19th century study of the problem of the early history of the solar system has been to discredit the details of Laplace’s hypothesis in a variety of ways, but to establish on a firmer basis the general view that the solar system has been formed by some process of condensation out of an earlier very diffused mass bearing a general resemblance to one of the nebulae which the telescope shews us, and that stars other than the sun are not unlikely to have been formed in a somewhat similar way; and, further, the theory of tidal friction supplements this general but vague theory, by giving a rational account of a process which seems to have been the predominant factor in the development of the system formed by our own earth and moon, and to have had at any rate an important influence in a number of other cases. |