Between the small wooden Dutch Clock of the value of but a few shillings, and the carefully-made Regulator Clock which costs ten times as many pounds, there is necessarily a wide difference; but both may be considered as within the general designation, 'House Clocks.' The former sometimes go for many years with a fair amount of regularity, and are found to be useful to the humblest classes, whose hours for early morning labour are frequently regulated thereby. The latter are made with such accuracy as to correct the time of other clocks, such as turret and church clocks, which are more exposed to the influence of the weather, and are necessarily made upon a coarser scale. In large mansions there is no handsomer or more necessary appointment for the hall or vestibule than a fine eight-day clock, 'to welcome the coming, speed the parting guest,' and to give the time of day to the entire household. It would be worth while, did our purpose admit of it, to write a chapter on the longevity of Clocks, by 'By day its voice is low and light, But in the silent dead of night, Distinct as a passing footstep's fall, It echoes along the vacant hall, Along the ceiling, along the floor, And seems to say, at each chamber-door, For evern—ever, Never, for ever.' It was such an one that Dickens apostrophized in that wonderfully-genial style which won for him so much love and fame:—'My old cheerful, companionable clock. How can I ever convey to others an idea of the comfort and consolation that this old The Hall clock is often a plain, simple, undecorated instrument, where all others are perhaps somewhat ornamented. Bracket clocks for the staircase or landings, Mantelpiece clocks for the drawing and dining rooms, for the study, the boudoir, and the best bed rooms, have each their separate shape and character specially designed, and are to be found in simple black-stained wood or real ebony, in marble of different colours, in bronze, in buhl, and in ormolu, with or without enamel ornaments, and with or without miniature figures at base, sides, and top. Until lately most of our ornamental mantelpiece clocks were imported from the continent, although French workmanship is generally inferior to our own, but preference was shown by the public to the The most ancient clocks differed in many respects from those now in use. Clocks of the earlier period had, as we have said, instead of the pendulum now Without entering into any very minute detail of the manner in which motion in a clock is successively communicated from one toothed wheel (G or R) or pinion (e or g) to another, which, indeed, would only tend to perplex the mind of the general reader, it will be sufficient to state the following. S is a square piece of steel fixed to and forming part of the pinion P. In winding the clock the key is placed upon this square, and being turned round continuously in one direction, the pinion P turns with it. This communicates its motion to the wheel R, which is fixed to the cylinder B, and which in its revolution coils or winds up the cord to which is attached the weight A. While this takes place the wheel G is held in check by another wheel, called the 'ratchet,' and a click (neither of which is seen in the sketch), but Were it not for this detention, the duration of which is much increased by the swing of the balance, the weight A would descend with gradually accelerated speed, till, in a few moments, the cord would be entirely unwound from the cylinder, and the clock be at rest. The Spring Clock as ordinarily made is thus constructed. The frame consists of two oblong plates of brass pinned together by short pillars, and pierced with holes, in which run the arbors of the various wheels. Next, the mainspring, the moving or motive power of the clock, which is a riband of steel, highly tempered, and enclosed in a cylinder or barrel. In the middle of this barrel is the spring or barrel arbor, to which the spring is hooked at one end, the other end being fixed to the circum To prevent the straining of the spring, a little contrivance called the stop-work is introduced. It consists of a piece of steel somewhat in the shape of a bayonet, which is so fixed and contrived that the When a clock is intended to strike, a separate train of wheels has to be introduced into it,—one train of wheels serving to keep the time, and another train for the striking part. It may be as well to add that a greater amount of labour is required to make the striking than the going part of a clock. There are only two kinds of striking parts now in use, and these are characterized by the terms 'Rack' striking work, and 'Count-wheel,' or 'Locking-plate,' striking work. The Rack striking work (see next page) is the best and safest ever introduced, because with it the clock may be made to strike any number of times within the hour. A, the minute wheel revolving in the direction of the arrow, and driving the wheel B, which is of the same size, and has the same number of teeth. C, a pin fixed in the wheel B, and acting on the lever D, which has its centre of motion in the point E. L, the click, the lower point of which acts in the teeth K of the rack M. S, the rack-spring, which acts upon the lower end of the rack, or, as it is called, the rack-tail, and brings it in contact with the snail P. Q and R are the jumper and its spring, by which the snail P, fastened to the star-wheel O, is kept in its place. Y, the centre of motion of the rack, on which it acts freely. In the wheel A is fixed a pin U, which, as the wheel A rotates, gradually forces before it a tooth of the star-wheel O, On the next page is an illustration of the back part of a French Clock, as seen upon opening the door of the case. At the right hand side will be observed the count-wheel A, fitting tightly upon a prolonged square arbor of the second wheel in the train, and having twelve openings of unequal length around its outer edge, 1, 2, &c. Just above the wheel towards the right will also be seen the 'Dog,' or 'Detent,' F, which falls into these notches, and is a part of the locking similar to that which is represented at the stud and the pin H. So soon as the stud is lifted the pin becomes disengaged, the wheel-work revolves, and the count-wheel being firmly fixed to the prolonged In connection with this detent is also another projecting piece, which is carried inside the frame, and when it falls presents a broad surface to a pin fixed in the rim of one of the wheels. Thus the motion of the wheel-work is stayed until this piece is again lifted by the going parts from the pin, and held in that position by the outer rim of the locking-wheel A, until again the next notch is presented to the detent. When it falls, the stud is carried with it, Clocks are made of all manner of shapes, patterns, and sizes, for all manner of places, positions, and persons. Bracket Clocks, which are intended to occupy but a small space, say on a staircase, or lobby, or landing, are sometimes made with extreme finish, care, and elegance, sometimes are simply plain and devoid of embellishment. They are constructed with or without striking work. Chime Clocks are a great addition to the attractions of a house. They are usually made to go eight or fifteen days; to strike the hours and quarters on four or eight bells or gongs. Musical Clocks are constructed so as to play several tunes at certain intervals with the greatest finish and perfection. The mechanism for time-keeping being easily disconnected from the musical mechanism, the latter may be stopped without any interference with the clock as a time-keeper. Carriage Clocks are made so as to be un Library and Dining-Room Clocks are frequently seen decorated with highly elegant ornaments, in bronze, marble, ormolu, and with miniature figures, as well as objects of still life, but these clocks are Skeleton Clocks are so named from their movements being all bare and uncovered. When watches were comparative novelties it was not at all an uncommon desire on the part of their possessors to watch the operations of a mechanism which was regarded as wonderfully resembling life itself. Watch cases were consequently made of crystal, and were found strong and serviceable. In skeleton clocks the escapement is sometimes made a peculiarly interesting feature to the non-professional eye delighting in noting the amazing accuracy with which each piece of the mechanism works and combines to produce the result required. Regulator Clocks are, as we have said, the most perfect time-pieces which can be manufactured. Tell-Tale Clocks are of great service in securing the attention and watchfulness of persons left in care of premises or property. They are made with a number of pins projecting round the edge of the dial, and coming into contact once every quarter of an hour with a pin fixed at the top part of the dial, over the part which in an ordinary clock is occupied by XII. The dial revolves completely once every twelve hours, and presents one of the projecting pins to the index every quarter of an hour; the watchman should then be ready at hand to pull a cord, by means of which the projecting pin is pushed in; otherwise the dial shows the exact time of his absence and neglect of duty. Electrical Clocks have been several times planned and made by different ingenious inventors, and obtained considerable notice, but they have not been hitherto as successful as was expected. Electricity has been applied to the direct movement of the pendulum itself, and subsequently to the raising a small weight to act upon the pendulum in the style of a gravity escapement. In perhaps the latest of these instruments, called a Magnetic Clock, an electromagnet was used to relieve the pendulum from the The Electro-Chronograph is a new and useful invention for timing with great precision the quickest of events. It is applied to a central seconds clock with a dial three feet in circumference showing the hours, minutes, seconds and fifths of seconds. This clock erected in a prominent position, say on a raceground, and worked by electricity, enables the starter of a race to set the works in motion; by means of a tape held up at the winning post and connected with the batteries, the winner upon breasting the tape stops the hand of the clock. The following simple directions will be found of great use in the management of a Clock:— When the Clock is unpacked it should be carefully handled with a silk handkerchief or piece of tissue paper, to prevent the moisture of the hands soiling the case. Unscrew the bell and take it off, then The stand or bracket should be both steady and level before the Clock is placed upon it; for, unless the Clock is quite in proper beat—that is, unless the beats or ticks occur at equal intervals, it cannot go regularly. In order to set the Clock to the hour of the day, the minute-hand should be turned on carefully forward with the finger and thumb, the setter pausing as he reaches the XII. and the VI., to allow the Clock to strike each hour and half-hour. If the striking should at any time be wrong, and it should strike the hour at the half-hour, or the half-hour at the hour, the error can be rectified by moving the minute-hand on to 5 minutes before the hour, or half-hour, and then back until it strikes. Or, if it should strike a wrong hour—e.g., supposing the Clock should strike 3, and the hour-hand point at 7, then the hour-hand may be moved back to 3, and the Clock afterwards set to the hour of the day in the usual manner. If, at any future time, the Clock should require regulating, the small steel square above the XII. is the regulator, and turning it a little to the right The bell-stud, or arm to which the bell is screwed, is purposely made of soft metal, so that it can be bent up or down so as to obtain a heavy or light blow of the hammer as may be desired. Both squares in the dial should be wound once a week. |