CROSS-BORDER JACQUARDSA difficulty has always existed in working cross borders on handkerchiefs, cloths, &c., so as to avoid having to shift or change the cards, and also to do without the expense of getting a complete set of cards cut for the whole cloth. It may be also that different patterns are required on the cloth, such as cross bands of small figures, and if, say, twenty cards would make a repeat of one figure, and it was required to weave, say, 100 repeats of this, and then change to, say, fifty repeats of some other figure, the same difficulty would arise as with cross borders. When there is only a short distance between the changes of pattern, it will generally be found more profitable, all things considered, to have the complete set of cards cut, so as to require no changing, particularly if the pattern will run for a length of time; but when the patterns or cloths are long, the cards become very expensive, and even if it would be desirable to get a complete set for the full cloth, it may be that there would not be space on the looms to hold them, over 15,000 cards being sometimes required to weave a complete tablecloth. Many methods have been adopted to remedy the inconvenience and to save expense. A few of them will be given, but it must be left to manufacturers to judge whether they would prove an advantage to them or not. For weaving cloths or curtains it is a common practice to have the cross-border cards and one repeat of the centre pattern cut. The card rack is made as in No. 2 (Fig. 99). When either the border or centre cards are working, they are put A better plan is to have a sliding-card frame, as shown in No. 1 of the same figure. A is the frame for the rollers over which the cards travel, B, B are two bars on which the card frame C, with the roller frame A attached, travels. The card frame is only shown in end view. Two of these must be for each set of cards, and the whole frame must be fastened together complete for all the cards required, so that it will all slide on the bars B, B. Suppose there are two machines working there must be four card racks; on two of these the centre cards are hung, and on the other two the border cards. Either set can be placed opposite the cylinders of the jacquard, and wrought as long as is required; then they must be taken off the cylinders, the card frame shifted till the other set of cards comes into their place, when they can be put on the cylinders and wrought over. This is a very good plan for working Another method is to have two sets of card irons, one above the other; the border cards are hung on the lower frame, and the centre cards on the upper one. The centre cards will work in the usual way, and when the border is to be wrought the cards for it are taken round the centre set, which, of course, are taken off the cylinder. The rollers must be made to shift so as to direct the cards properly into their respective frames; the top frame is smaller than the bottom one, and farther out from the machine. If hooks and eyes are sewn on the first and last cards of these sets, the weaver can hook them together when a fresh pattern is required, so that the one set will carry the other round the cylinder. Then, by drawing a cord, the rollers should change position so as to direct the falling cards into the proper frame. The card irons are of the usual shape, and the distance between the upper and lower ones may be regulated by circumstances. Another simple method is to have the card frame made with a double curve in it, as shown in Fig. 100. One set of cards hang in each of these curves, as at A and B. The set in the curve A can be wrought over as long as required; then these cards can be taken off the cylinder and the set at B put over it. One thing must be observed: that the frame and rollers be so placed that the cards can be guided into the receptacle B, and to do this there must be a considerable fall for the cards, so that for a loom with a low framing this might not be feasible. Otherwise, it is a simple method of arranging two small lots of cards, and if one lot is much larger than the other, let A be a narrow Although such arrangements as the foregoing are required where there is much machinery used, it is evident that for frequent changes they would take up quite too much time. Several machines have been made for the purpose of changing from one set of cards to another without having to move the cards. The principle of these machines is to have two cylinders, one at each side; one set of cards is placed on one cylinder, and the other set on the other cylinder, so that by working one or other cylinder, as required, either border or centre may be woven. No. 1 (Fig. 101) shows a plan that was tried some time ago, but did not work satisfactorily. The needles passed through a needle board at each side of the machine, as at A and B, and had small spiral springs fastened on them inside the needle boards. The border cards could be put on the cylinder at A, and the centre cards on that at B. The cylinder at A could be wrought as a single-acting machine till a change of pattern was required; then the cylinder at B could be brought into action, and that at A remain stationary and clear of the needles. The heads of the hooks were made heart-shape, as shown, and the blades of the griffe could revolve into the position shown by the dotted lines, so as to suit the working of the cylinder at B; this was effected by the weaver pulling a cord. This machine was given up, as it was difficult to keep it in order. Another method is shown at No. 2 (Fig. 101), where there are two griffes—one at F, and the other at G; one cylinder works at E, and the other at D. Only one set of springs is required on the needles—behind the needle board E—as the spring of the hooks is sufficient to act in the opposite direction. When the cylinder D is working the lower griffe is stationary, and when the cylinder E is working the upper griffe is stationary. The cylinders and griffes are brought into action as required by suitable mechanism. This machine has not been considered sufficiently successful to make it worthy of being persevered with. The principle of Davenport & Crossley’s border jacquard is shown in Fig. 102. The upright hooks are as in an ordinary machine. Four of the needles are shown at b, and are made in the ordinary way, The principle of Devoge’s border jacquard is shown in Fig. 103. C C is the rocking bar, for driving the cylinders, working on the centre D. It is driven by the levers F, G, and the connecting-rod E. The notches A and B fall over the studs on the cylinder frame, and can either be let down or raised, as required, by the cords K, L and the levers H, I. The machine is an ordinary double-cylinder one, and either griffe can be wrought to suit the cylinder that is in action. This machine can be used as an ordinary double-acting one, as a single-acting one raising both griffes together and bringing in both cylinders together, or as a border machine working one griffe and one cylinder at the same time. Another method, similar to the above, is to have a double-cylinder machine with the cylinders wrought by the griffes, then have a stud on the crank-shaft wheel for raising one griffe, as for an ordinary single-acting jacquard, and the two connecting-rods from the griffes made so that either will work on it. A hook or catch can be put in any convenient place, so that when one connecting-rod is on the stud the other can be hooked out of the way. The rods can be made to slide on to the stud easily, and be fastened with a pin, so that the weaver can readily change from one to the other. OPEN-SHED JACQUARDSTo obviate the vibration of the harness as much as possible, as well as to economise the wear and tear of it and to minimise the friction on the warp threads, especially in weaving patterns requiring heavy lifts, such as warp-faced patterns, Messrs. Priestley & Co., of Bradford, patented an open-shed jacquard, the principle of which is shown in Fig. 104. It did not, however, prove successful, as the tacklers found some difficulty in working it. The machine is an ordinary double-lift jacquard with one cylinder, and works in the ordinary way. The hooks are made as in Fig. 104, where it may be observed there is a turn or catch on the lower portion of the hook, at A. Above these catches is a set of bars, b, like a stationary griffe, and when the hooks are raised by the upper griffe, in the ordinary way, they spring over these lower bars and rest on them when the griffe begins to fall. All the hooks raised would thus remain up, were it not that the cylinder, pressing in for the second griffe (the machine being double-acting), which begins to rise as the upper one begins to fall, presses back those hooks that are not to be raised for the following shot, and as they are held by the griffe above, they spring back at the bottom, and, clearing the bars b, come down with the falling griffe. In this way the hooks, when once raised, remain up till pressed off by the card, so that in the case of working a warp stripe with an 8-leaf satin binding the hooks would only fall for every seventh pick. Another machine has since been tried, but did not work satisfactorily. The lower knives raise the tops of the hooks slightly above these upper knives, so as to clear them, and the upper grid is then moved sideways, taking the knives from under one set of heads of the hooks and placing them under another set. Each time the griffe rises all the hooks not acted upon by the cards will be deposited on the upper grating, and will be transferred from one knife to another at each lift, till the card acting upon the needles keeps them clear of the upper grating and allows them to fall with the descending griffe. In this machine the tugs or tail cords, as used with double-lift machines, are not required, the double hooks serving for two single ones. Other efforts have been made in this direction, but the plan of using small pulleys on the tail cords, between the pairs of hooks, to which the neck twines are hung, is the only one worth mention. The same principle will be found for working the shafts in Fig. 115, and is more suitable for a few shafts than for 400 to 600 hooks, or pairs of hooks. THE VERDÔL JACQUARDEveryone accustomed to work large patterns on jacquards, especially on power looms, must have found the inconvenience resulting from a large set of cards. The space taken up, the time and trouble required for changing them, to say nothing of the cost, have been sufficiently felt, but have hitherto had to be borne with as a matter of necessity. For working fine tablecloths with from 150 to 180 picks per inch, or for curtains where from 3 to 6 cards are required for each weft line of the design, and when from 2 to 4 jacquards are used, the inconvenience and cost of a set of cards ranging from 10,000 to 50,000 are very considerable. The small jacquards described at Fig. 30 make a great saving in the space taken up by the cards, as well as in the quantity of card paper used; but it has been thought that a still greater saving could be effected. M. VerdÔl, of Paris, has for a length of time been endeavouring to perfect a system of substituting a continuous roll of perforated paper The VerdÔl machine consists of a small jacquard, the ordinary French make of machine, which is usually made with 440 and 880 hooks for the single and double machines respectively. In addition there is a frame or box attached to the front of the machine, against the needle board, containing another set of horizontal and vertical needles or wires, which act upon the ordinary needles of the jacquard, according as they are acted upon by the perforated paper. Fig. 106, Nos. 1, 2, and 3, shows the principle of the machine. B, B show the needles, and D, D the uprights or hooks of the ordinary jacquard; only four of each are given, but sixteen are used. N is the face-plate or needle board, and O is the clap-board used for bringing back the needles, which have no springs on them; but the hooks are turned up double, and the back or turned-up portion of them, coming against horizontal wires or bars, shown in section above the needles, acts as a spring to keep them steady. This portion of the machine is a complete jacquard of the ordinary French make. In addition to this there is the apparatus on which the perforated paper acts, and which communicates this action to the jacquard. It consists of a box or frame containing two sets of wires—one set horizontal, as A A, about 6 in. long, and terminated at one end by a small head, as shown separately at A1, which are called hitting wires. The other set is vertical, as C C, of fine wire, having a loop on one end, by which they are suspended in a frame, and The card paper is of a special make, thin and tough, and is strengthened along both sides and in the centre by strips of paper pasted along it where the stud holes fall. No. 3 shows the motion by which the clap board E is raised and lowered by the sliding of the cranked bar F between the two studs 2. No. 4 shows the size and pitch of the holes in the hard paper. These are traced from the paper, and lie diagonally, two rows of 8 making one row of 16 hooks in the jacquard. These machines are working in large numbers in France, and appear to give more satisfaction there than here, partly because they are better known, and the French workmen are better adapted to handle the small parts belonging to them. A coarser machine is more suited for the ordinary workmen to be found in the factories of this country. But it is strange if a machine of a pitch about half-way between the French jacquards and ours would not be better than either; not taking up so much room as ours, and not so minute as the French. However, The card-cutting machine used for the French system of work is a very elaborate contrivance, being more like a jacquard loom than any of our card-cutting machines, at least in so far as the harness is concerned. The principle of it is seen in Fig. 108. a shows the set of cords by which the punches are wrought. The method of preparing the pattern to attach to these cords has been referred to before, but will be repeated again further on. These cords pass over the pulleys The pattern is prepared for this machine by hand, working one repeat of it as follows:—The design, painted on point paper, is placed on a frame in an upright position, and over each line on it is stretched a vertical cord, which is taken as warp. The picker then takes a bobbin of weft and inserts it under every cord that passes over a painted dot on the first weft line of the pattern, keeping it in front of all the cords that pass over blank spaces, just in the same order as a shuttle would pass through if the shed were to be opened by a jacquard. When this is done the next line of the design paper is picked similarly, and so on, till a complete repeat of the design is loosely woven with cords, which are made of well-twisted harness twine. This process is somewhat similar to reading the pattern for the draw loom, which see. For coloured work a shot would require to be worked in for each colour on any weft line, the same as it is to be woven. When this is prepared, it is taken to the cutting machine and the warp tied to the cords A, the weft showing the warp ends to be drawn for each card. HALF HARNESS AND MUSLIN HARNESSESSo far we have been speaking entirely of ‘full-harness’ work. Though the principle of mounting is much the same in all classes of harnesses, there are certain deviations peculiar to each. One drawback to the full harness is the amount of machinery required to give a large extent of pattern, an upright hook and a needle being required for each thread in one repeat of the pattern. In a half harness only half the amount of machinery is required on the same fineness of cloth to give an equal extent of pattern; but it is only for a few classes of goods that this method of working is suitable, leno The ground of the cloth is a plain texture, and was formerly wrought by having two leaves of long-eyed heddles in front of the harness, into which all the warp was drawn, this probably being more convenient for the hand-loom weaver; and besides, a more even plain ground can be made with the heddles than with the harness and one leaf of heddles. Two shots of ground, or fine weft, are given to one shot of figuring, or coarse weft, usually cotton rove; but to avoid using a pick-and-pick loom when working by power, the coarse shot may be made by throwing two finer ones into the same shed. In power looms the ground is wrought by raising the plain leaf of heddles and all the harness alternately, and the figuring shed is formed by drawing the harness with a card acting on the machine. The pattern is painted solid, without any twilling or binding on either ground or flower, so that the figuring shot will be in a plain shed for the flower, but will be loose or unbound over the ground, and is afterwards cut off in a cropping machine. The plain shed, into which the thick weft is thrown, must also contain the shot of thin weft thrown in either before or after it, according as the figuring shed follows the plain shed made by raising the harness or the heddles; for supposing the heddle shaft to be raised and a ground shot thrown in, then the shed reversed by raising the This principle of mounting is now done away with, as it has no advantage over the ordinary full-harness mounting, which can also have a pair of presser leaves of heddles in front for working the ground, if desired; but they are unnecessary in a power loom, except when a very level ground is required. A twilled or flushed figure may be formed with the common half harness, but only having half the warp for binding causes it to be loose and ragged round the edges. To work a large pattern, perhaps the most economical way, at least in the hand loom, is to use a pressure harness with two threads in the mail, and with four presser heddle leaves in front. The number of leaves regulates the twill on the figure. The cloth may be woven pick-and-pick, ground and figure, or 2 picks ground to 1 of figure. When the harness is drawn for the figure all the heddles must be sunk but one leaf, and sinking the two front and two back leaves alternately, raising the back ones when the front ones are sunk, and vice versa, will form plain cloth with the draft 1, 2, 3, and 4 over the leaves. A 4-leaf twilled figure can be made with this mounting, but still it will not have the advantage of the full harness, in which the figure can be varied in twill, and bound round the edges. SPLIT HARNESSThe term ‘split harness’ is sometimes applied to the pressure harness when wrought with two threads in the mail, this constituting a splitful of warp, so that each cord of the harness controls a splitful of warp; but this is only the finest description of pressure harness. The split harness, or ‘shaft monture,’ was invented in the silk district of Bethnal Green, shortly after the introduction of the jacquard, for weaving rich silks which have about 400 threads of warp per inch, but much less weft—perhaps about one-fifth of that number of threads. This method of working is surpassed by the twilling machines now in use (see Twilling Jacquards), though they are more intricate, and would not suit well for a hand loom, as they are heavy to draw. PRESSURE HARNESSThis is the old draw-loom system of working, and, old as it is, is still in use on our modern hand and power looms on the finest description of damasks, and is not likely to be surpassed for making a good piece of cloth. Much firmer than a harness, and producing the largest possible pattern with the least possible cards, mounting, and machinery it took up its position in the days of the drawboy, and has held its own, with the aid of the jacquard, against all the inventions of modern times. The principal advantage of this system of working is that a much larger pattern can be produced with the same quantity of cards, mounting, and machinery, than by any other means; but the pattern wrought by a pressure harness will not compare with one wrought by a full harness for fineness of outline or detail. When weaving large tablecloths with 100 or 120 threads of warp per inch, and from 50 to 72, or even 90 in. in the single pattern—that is, when the pattern is all, or nearly all, single—the amount of machinery that would be required to work it on a full harness could not be crowded on a loom, the French system being the only one by which it might be attempted; and even then the difficulty of keeping the machinery and cards in perfect working order would be very great, not to mention the cost of mounting, patterns, cards, &c. The quantity of harness and machinery is reduced in a pressure harness by drawing two or more warp threads into each mail in the harness. Suppose we take 60 in. of cloth with 100 threads per inch = 6,000 threads, and allow 3 threads to each mail in the harness, or each hook of the jacquard, 2,000 hooks, or four 500 jacquards, would be required to work the pattern. As many as six 600 jacquards are sometimes required on this description of work when very fine; but three or four 500 or 600 machines are more commonly used on either hand or power looms. To work one of these finest patterns in a full harness 10,800 hooks would be required—say, six 600 machines with In early times, when the drawboy took the place of the jacquard, 6, 8, or 10 threads were put to each mail, or went to what would now be one hook of the jacquard; and patterns were not usually so extensive as they are now, so that the cords of the harness were greatly reduced in number, but with a proportionately coarser effect of pattern. The difference between a pattern wrought with a full harness and one wrought with the pressure or any of the twilling harnesses, is that the outline is clear and defined in the full harness, and the detail and points of the figures can be turned on a single thread, whereas in the others the edges of the figures will be jagged or in steps, and the points must turn on whatever number of threads are lifted together. The pattern on the cloth must therefore have somewhat of the rough, square effect of the design on point paper, though, of course, reduced in size, but will be worse in this respect—viz. that whereas the edges of the figure on the point paper are clear and well defined, on the cloth they are not so, the rough edges to some extent blending the figure into the ground, and not giving the clean, sharp effect of a full-harness pattern. Shaded effects are also coarse on a pressure harness, but can be made effective if broadly treated. Cloth with 100 or 120 threads per inch does very well to have three threads to the mail, and from 80 to 100 threads per inch suits very well for two to the mail. Any coarser set than 80 threads per inch requires to be woven in a full harness to produce good work, and for superior work nothing less than 100 threads per inch should have two threads to the mail, though 80 per inch does very well. When several threads are put to the mail, it is also usual to put several picks to each card. The fewer picks, the finer will be the pattern; but a good method of regulating this is to make the checks formed on the cloth square, a little more or less according to the fineness of the pattern required. Thus, if the cloth is wefted square, or a little over that—say, 100 warp by 100 to 110 weft threads per inch—paint the design on, say, 8 × 8 or 8 × 9 paper, and give as many shots In this way any alteration required can be made on the number of picks per inch given to cloth woven on a pressure or twilling harness, without distorting the pattern by varying the number of picks given to each card to suit the shotting. Neither is it necessary to have the same number of threads in each mail; the warp might be mailed 2’s and 3’s or 3’s and 4’s, but the more regular they are, the better. If the fineness of the cloth requires to be altered, it may be woven in the same harness without any alteration by varying the number of threads in the mails. For instance, a warp of ninety threads per inch mailed 3’s and one with 120 threads per inch mailed 4’s would work in the same harness. Similarly, the same set of cards would suit for making different widths of cloth by making the harness narrower in the cumber board and altering the mailing so as to keep the cloth the same set, or it may be made a finer set and not alter the mailing. In either case the pattern would be reduced in size. Fig. 111 shows a portion of a pressure-harness mounting which is similar to that of the draw loom. It is mounted in the same manner as described for full harness, only that the warp must be divided by the number of threads to be drawn into each mail in order to find the quantity of harness required. The kinds of mails used are shown at A The principle of working the pressure harness is best explained by It will be seen that the presser heddles have three positions, viz. a sunk, a raised, and a middle position. The length of the eyes is to allow the harness to open the shed when the heddles are stationary, or in their middle position. They must be a little longer than is required One drawback to this method of working is the distance which separates the harness from the fell of the cloth, or even from the reed; and if there is any obstruction to the warp rising or falling, such as roughness in the heddles or reed, or lumps on the yarn, it will not, unless very tight, fall into its proper place, and the shuttle may pass over or under it when it should not do so, giving a picked or darned effect to the cloth; slack threads may cause the same. The warp must be kept as tight as possible, and all the threads should be at a uniform tension, the heddles straining each thread alike; the harness should be as close to the heddles as the yarn will permit it to be. The space occupied by the harness, heddles, and traverse of lay should be no greater than is necessary; then, with a small but clear The front mounting of a damask hand loom is shown in Fig. 112. A, A are the shafts, four in number, but eight are generally used for an 8-leaf satin; B, B are the jacks; C the lams, which require to be one more in number than the leaves of heddles; D the treadles; E, E1 the upper marches or jacks; F, F1 two sets of coupers or levers, with their fulcrums at f, and loaded at the outer ends with the weights G. Under the ends of these levers is a bar N, to which the weights draw them, and keep the heddles up to their middle position. The cords I are not fastened to the heddles, but pass down through them to the The cording generally used for an 8-shaft satin is shown at A, Fig. 113. Sometimes the twill is run in the reverse direction. In either case it will be observed that the twill on both ground and figure run in the same direction, which makes one a sateen, or coarse twill, and the other a satin, or fine twill. In order to have both twills alike they require to be run in the opposite direction on the cloth, as shown at B, which will give a fine twill on both ground and figure, on both sides of the cloth, with single yarn. This does not hold good with every twill. When weaving, the weaver presses down the treadle which is connected with the jacquard (another treadle being required for this purpose) with his left foot, then works over the twilling treadles with his right foot, holding down the machine treadle till he gives as many shots to the cards as are required. When the card is to be changed the weaver lets down the machine and draws another shed, striking up the weft again without throwing in a shot or taking his right foot off the treadle. This clears up the shed, and makes the yarn steady before he springs A is the treadle to which the connecting-rod from the machine is fastened by a bolt through the slot at H, or the slot may be in any desirable place. B is a rack in which the end of the lever works, which keeps the treadle bowl steady to the tappet. E is the tappet on the tappet shaft of the loom, and is made so as to act at every shot. D is the fulcrum of the lever, and C is the stand, which is bolted to the ground and fastened to the side of the loom. This portion of the motion working alone would raise the griffe for every shot, the same as An ingenious method of working the heddles of a pressure harness by the jacquard was invented in Bethnal Green shortly after the introduction of the original machine. It was used for weaving the richest silk damask, which had 400 threads of warp per inch and about one-fifth that number of weft shots, so that five threads of warp might be drawn into each mail without making the pattern appear any coarser in the warp than in the weft. A sketch of this mounting is given in Fig 115. A shows the hooks for working the heddles, and B those for working the harness. Eight hooks are given for working four leaves of heddles. It will be seen that a cord from two hooks passes round one of the pulleys C, and each of the heddle shafts is attached to one of these pulleys. These hooks may be raised by the griffe of the jacquard, which would require to rise and fall for every shot, or the TWILLING JACQUARDSAs has been stated before, one of the drawbacks to a pressure harness is the strain which the warp has to undergo when forming the shed. This necessitates having a good warp, which adds to the cost of the cloth, and in low-class goods this consideration may hinder the sale. Many methods have been adopted for working the ground of the cloth without using a pressure mounting. Some of these are explained under ‘half harness’ and ‘split harness,’ but none of these methods would produce cloth like the pressure harness. A twilling jacquard to act similar to the pressure harness, but without using the front mounting, or by dispensing with the leaves of heddles, was patented by Mr. Shields, of Perth, in 1859. This machine underwent several improvements, and now there are two varieties of it in use, one known as the Irish or Bessbrook machine, being patented by Mr. Barcroft, of the Bessbrook Spinning Company Limited, county Armagh; the other as the Scotch machine, the improvements being made by Mr. Shields and others. The principal difference between the two machines is that the blades or knives of the griffe have a horizontal or sliding motion in the Scotch machine to enable them to get clear of the heads of the hooks, whereas in the Bessbrook machine they turn out of the way or partly revolve. A full description of the Bessbrook machine is here given. Fig. 116 is a view of the framing of the machine. K is the cylinder, which may be wrought by the swan-neck motion, as shown, but it is better to be wrought by a separate motion from the loom. D is a cord attached to the handle of the shears for reversing the cylinder; E is a brass bushing through which a shaft passes for raising the griffe. The shedding of this machine is exactly the same as that of an ordinary single-acting jacquard. The griffe rises and falls for every shot; the cylinder travels out and in, but does not turn till two or three or whatever number of impressions required are given by each card. To prevent the cylinder turning it is only necessary to raise the shears so that they will not catch it. This is done by means of the tappet A, shown The number of knives in the griffe must be regulated to suit the twill to be put on the cloth; they must be a multiple of the twill, and this to some extent regulates the number of needles that must be in each upright row. For example, an 8-leaf twill may have 16 or 24 knives, which would be twice or three times over the twill. If there are 8 rows of needles to 16 knives, or 16 rows of hooks, that would be 2 hooks to each needle, or if there are 24 rows of hooks there must be 3 hooks to the needle; but if only 2 hooks to the needle are required, Each of the twilling needles, A, Fig. 119, must be connected with as many of the knives as there are repeats of the twill; thus, for 24 with an 8-leaf twill, the 1st, 9th, and 17th knives would be acted upon by the one needle, and so on with the others. Now as to the action of the machine. When the pattern card presses upon the needles the griffe begins to rise, and when rising it must lift all the hooks required for the pattern except 1/8th part of them The working of the texture requires the griffe to fall for every shot, which would be otherwise unnecessary, and the card must come in against the needles each time to push off the hooks that are not to be raised. This causes wear and tear, which cannot be avoided with this machine, but they work very well, though they are not by any means perfect. There is a good deal of friction on the needles, which causes them to wear quickly; but being so much easier on the warp than the pressure harness, and more easily managed, they are extensively used for large patterns in the fine linen damask trade. They will not make so firm a cloth as the pressure harness, and have the objection that all twills formed with the harness have when there is a gathered tie—viz. that a portion of the cloth will have the twill running in one direction and a portion in the reverse direction. Like all single-acting jacquards, these machines have no counterpoise in themselves, and being very heavy require one added to assist the loom to raise them. Sometimes this is accomplished by means of a carriage spring placed on a beam or on the top rail of the loom frame; and an arm from the shaft, which raises the griffe resting on the spring, will form a sufficient counterpoise, the spring being made as strong as is required for the purpose. Unless the springs, which are made similar to those used for carriages, are nicely tempered, and the different pieces made so as to slide freely on each other, they are liable to snap when the loom is running quickly. The griffe is generally driven from the fly-wheel on the crankshaft in the same manner as for ordinary single-acting jacquards. It is, however, a better plan to drive it from a crank on a stud wheel gearing into the tappet-shaft wheel. This does away with the necessity for a counterpoise unless the machinery is very heavy, in which case a few strong spiral springs will suffice. The horizontal shaft for raising the griffe, or griffes if two or more machines are used, must be very strong, so as not to twist with the tortuous strain, which is very great. Three of these machines, with 500 or 600 needles to each, The Karl Wein Jacquard.—This machine is a twilling jacquard on the same principle as that last described, but performs its work in a more scientific manner. It was patented by Messrs. J. TschÖrner and K. Wein, Kesmark, Hungary, and was first introduced into this country at the Glasgow Exhibition of 1888. The following is a description of the machine exhibited there: The principal feature of this machine is perhaps that each knife acts independently in a grid, and is wrought by a tappet at the side of the loom, so that any row of hooks can be raised or lowered at pleasure, and this without any change of card. Fig. 122 gives an end view of the framing, showing the upper and lower grids in which the knives or lifters slide. An end view of four of the lifters is given at A, 1 and 3 belonging to the top set, which work in the upper grid, and 2 and 4 to the bottom set, which work in the lower grid. A perspective view of eight of these lifters is given at B C, Fig. 123, with upright slide bars D attached to them, which slide in the rack or frame E. These bars are for the purpose of making the lifters rise steadily and horizontally, as (which may be seen) they are not all lifted at their centre. Only one connection is fair in the centre, which would no doubt be an objection with a heavy harness to lift; but this arrangement is made to suit for the machine sitting across the loom, for a London tie, and some method of making vertical connections from the levers to the lifters is necessary. The above does very well for a narrow harness if light. If the machine was fixed on the loom for a Norwich tie, or with the cards to hang over the back, then the connections from the levers might all be at the centres of the lifters and the bars D would only be If necessary to use more than one machine, some arrangement would require to be made for lifting them. It might be done by using a double set of levers with connecting rods similar to those used for twilling looms. The twilling of the ground might be wrought by a griffe and hooks as in the Bessbrook machine, thus doing away with seven treadles and seven tappet plates, but this would make the twilling a single-acting shedding motion. Since this was written the machine has been altered so as to make it more suitable to the requirements of the work in this country, but does not appear to gain favour, and this class of weaving is not very extensively used. |