Though the term ‘jacquard weaving’ is properly applied to work done by the jacquard machine, it will here be taken to apply to all harness weaving, or work that extends beyond the range of shafts, or leaves of heddles. The question arises, When is the limit to the number of shafts that ought to be used reached? It apparently used to be when no more could be got into the loom, as up to ninety-six shafts were used; and this seems to be quite enough for any weaver to get the yarn through, or for any loom to hold, but it must be remembered that at present the appliances are much more suited to the work than they formerly were; and now, except in woollen or worsted goods, where it is desirable to use shafts on account of their firmness in comparison with that of a harness, from twelve to sixteen shafts are as many as it is generally thought desirable to have in a power loom. I have seen thirty-five shafts, all in one tier or set, working diaper very conveniently in a hand loom, and more than double that number of leaves working worsted in a power loom; but whether the latter was desirable, or not, I must leave to the judgment of the manufacturer who possessed it. Many ingenious inventions have been made for the purpose of simplifying the working of a large number of shafts, but as a description of them would be out of place here, we may pass on to the draw loom, which appears to be the first form of harness of which we have Men’s figured counterfeits so like have been That if the party’s self had been in place, Yet Art would vie with Nature for the grace— is not known, though in Gilroy’s report of Arphaxad’s description of his loom to Deioces, king of the Medes, it is stated to have been accomplished by means of carved blocks of wood acting on needles, which wrought the harness or heddles and thus formed the pattern; but as Gilroy has admitted that the introduction to his work on weaving is a pure invention of his own, for the purpose of making it appear that the Ancients were acquainted with motions similar to those on our modern looms, or as a ‘take-off on those who angle hourly to surprise, and bait their hooks with prejudice and lies,’ we need not dwell further on the subject. In any case, figured cloths must have attained considerable excellence in very early ages. The curtains of the Tabernacle were embroidered with figures, and the veil of the Temple was, according to Josephus, embroidered with all sorts of flowers, and interwoven with various ornamental figures, the door curtain being embroidered with blue and purple and scarlet. The ephod of the High Priest was similarly embroidered. The Egyptians worked coloured patterns in the loom so rich that they vied with the Babylonian cloths, which were embroidered with the needle. The method of working is unknown, but cloths taken from the tombs in Egypt, which may be seen in South Kensington Museum and in the Gobelins tapestry manufactory, Paris, appear to be made on a principle similar to that of the Gobelins tapestry; the warp is of flax and the weft of coloured wool: and the looms depicted on the catacombs in Egypt are very similar in appearance to tapestry looms. Embroidering was practised in Egypt prior to the Exodus of the Israelites; and gold and silver threads or wires were used both for embroidering and weaving, being known nearly 4,000 years. The Babylonish garment taken by Achan, whose sin brought much Pliny says that weaving cloth with gold thread was invented by Attalus, an Asiatic king, and that the Babylonians were most noted for their skill in weaving coloured cloths. This was in Homer’s time, about 900 B.C., when weaving and embroidering appear to have attained great excellence, and to have been very gorgeous. At that time the labour of the loom was considered an accomplishment, which ladies and even princesses tried to excel in. As before stated, the draw loom is the first form of machine for figured weaving of which we have any record. It is not known where it was invented, but it probably passed from China to Western Asia with the silk manufacture. The ancient Egyptians, Greeks, and Romans do not appear to have known it. The Chinese have still in use a draw loom in which the drawboy stands on the top and draws up the parcels of twines which have been previously arranged for him. After being established in Damascus (hence the name damask), the draw loom passed on to Europe, where the Chinese method of working was used till 1604, when M. Simblot, in France, connected to the neck a separate series of cords, called the ‘Simple’ (perhaps a corruption of his name), so that the drawboy could work when standing at the side of the loom. It is said to have been introduced into England in 1567. The next improvement was to dispense with the drawboy’s services, and for this purpose a patent was taken out in 1687, by Joseph Mason, for ‘a draw boy engine by which a weaver may performe the whole worke of weaving such stuffe as the greatest weaving trade in Norwich doth now depend upon without the help of a draught boy.’ In 1779 William Cheape patented a plan to dispense with the drawboy by having the ‘simple’ above his head, and drawing it down with knots which were held in notches, as described in Fig. 2. Before beginning to describe the draw loom it may be better first to describe what it is required to do. Its principal use appears to have been for the weaving of damask, which is one of the simplest forms of figured weaving. Reduce a damask texture to its elementary form, and it consists of twilling, or, more correctly, turned or reversed twilling. If we take a common dice pattern woven with shafts, it will easily be seen that one dice is formed by a warp twill, and the next one by a weft twill, or that the dices are formed by warp and weft twills alternately. Now, what forms the pattern? The yarn may be all of one colour, the threads may be so closely set together as to make them individually invisible, or to appear as a plain surface, and yet the dices come out distinctly in two shades of colour. The play of light on the longitudinal and latitudinal threads produces this effect. The dices formed by the latitudinal or horizontal threads will always appear darker than the yarn in the cloth when the latter is placed between the observer and the light, whether these threads be warp or weft, as there is a certain amount of shade on each of them, and of shadow cast by them, whereas the longitudinal or vertical threads are illuminated, without any shade or shadow, and appear lighter than the yarn did before being woven; and this is the reason why a good side light is the best for showing up the pattern on damask, it developing the above to the utmost. In a good material the difference of shade between the ground and figure is very considerable, but in some thin, coarse goods This is the reason of the pattern appearing on the cloth; then it is the business of the designer to regulate what form it is to partake of, by preparing a suitable design; and according to instructions furnished to him by the design, it is the duty of the drawboy to raise the warp by regulating the cording of his harness, and drawing it so as to reverse the twill from a weft one to a warp one wherever the figure is to be formed on the cloth, and to do so in such order as to produce the pattern required. The draw-loom mounting consists of two parts—the drawboy mounting, or the harness with its tail and simples, to be wrought by the drawboy; and the shaft mounting, which is required to form the texture of the cloth, or to interlace the warp and weft through both ground and figures; the harness only interlaces them at the edges of the pattern, or causes either warp or weft to be above, to form the figure en bloc, but without interlacing them together. It is therefore a ‘compound mounting,’ and is known as a ‘presser’ or ‘pressure’ harness. For simplicity’s sake let us suppose the principle of the drawboy to be applied to shafts or healds, and take a simple figure, as Fig. 1. For it there are 5 parts, or it could be wrought with 5 leaves of heddles with a straight draught. Fig. 2 shows the mounting; A A is the back mounting, which in this case is a shaft mounting, but would be a harness for a more extensive pattern. B, B are the pressure heddles or front mounting. These are 5 in number, as the ground or texture is taken as a 5-end satin or twill, C is the pulley box with the tail cords, D, D, passing over the pulleys, and tied to the wall or to the loom framing as at E. The knobs F hang over the weaver’s head, and are attached by cords H, passing through a hole board G, to the tail cords, D, D. There are heads on the cords H, and the holes in the hole board are made thus keyhole; so that when the weaver pulls down a knob the bead can pass through the round hole, and the shaft or Fig. 3 gives the draw-loom harness; A, A is the carriage, or the rails that support the harness, which rests on the capes or side rails of the loom. Supported by the carriage is the pulley box P, which is a frame fitted with small pulleys, and must be sloped at such an angle as will allow the tail cords to sink when opening the sheds without obstructing the pulleys underneath them. The neck twines extend from the figures 1 to 8 to the knots above the hole board D D. The cords which connect the neck twines to the mails E, E are called sleepers, and those which connect the mails with the leads F, F are called hangers. The hole board is made of hardwood perforated with holes, which run from front to back in diagonal rows from right to left; it should be a little finer than the set of the reed, to allow for empty holes that are sometimes caused by the tie of the harness ending with broken rows of hooks in some or all of the repeats. In Scotland, B, B are the tail cords, attached to the neck of the harness at one end, and at the other end all of them are fastened to the tail stick M, by means of which they are secured to the roof of the house. There must be a tail cord for each part of the harness; here only eight are shown for the front row of the harness, and if there were eights rows of harness in the hole board, 64 tail cords would be required, and the complete harness would be made up of several repetitions of the 64 neck twines; four of these repetitions are here given for the first row of the hole board. Of course there might be 400 to 600 tail cords in a full mounting. From each tail cord descends a vertical cord to the ground, as shown at G, G. These are the simple cords, which, taken collectively, are termed the ‘Simple.’ It is on these cords that the pattern is read, or, rather, tied up. The simple cords are gathered together, according to the pattern, by passing twines round them and forming the twines into lashes or leashes, as shown at I, I. Heads of stronger cord, to which the lashes are attached, are shown at N, N. The leashes or lashes are made of cotton yarn No. 48, from six to eighteen plies of which are moderately twisted together so that the twine will not curl; the heavy twine is used for coarse work, where only a small number of lashes is necessary. The length of the lashes is from 8 to 12 in., according to the breadth of the simple. The heads are about 4-1/2 in. long, of good cord, as foot twine, which is used finer or coarser according as more or less heads are required. The heads are made with a noose on them that will run up or down on the gut cord L, which is a strong cord, generally extending from the ground to the roof of the house. K, K are the bridles connected with the lashes, and used to draw them down in succession as they are wanted by the drawboy. When there are a great number of lashes, two gut cords are used, as shown at No. 1 (Fig. 3), and the lashes are looped alternately on each and bridled accordingly. In coloured work, where three or four draws are required for each weft line of the pattern—that is, one draw for each colour—it is usual to have two gut cords with cross bridles from The method of preparing and mounting the draw-loom harness is much the same as that now in use for jacquard harnesses, and, as it is entirely out of use, it is unnecessary to describe it. In order to make the neck twines draw evenly, rollers are placed between each set of cords at the points 1, 2, 3, &c.; these rollers keep the cords straight and make them all rise the same height at the mails, which they would not do unless they all sloped to the hole board at the same angle. READING OR LASHING THE PATTERNThe pattern, painted on design paper, same as for pressure-harness damask, is fixed upon a lashing frame, as shown in Fig. 4, and the lower ends of the simples are passed over it and fastened to the crossbar B. The simple cords are held in position over the design by the comb C, C, which must be of such a fineness as to make each simple cord stand directly opposite that space of the pattern to which it corresponds, one simple cord being placed between each pair of teeth of the comb. It will thus be seen that there must be a simple cord for each vertical line on the pattern, or rather for each vertical space between the black lines. In the same way, there must be a head of lashes for each horizontal space, or line, as it is usually called, and which would answer to a card for the jacquard or dobby. The straight-edge E E is made so that it will slide up and down in the frame, to mark the line on the design paper that is to be next read by the lasher. Now refer to the line of the pattern above the straight-edge, and it will be seen that the first square or check to the left is blank, and it is accordingly passed over by the lasher; the second and third checks are painted, and as the simple cords corresponding to them have to be drawn to form the pattern, the lasher twists one end of his lash over the pin G, and takes a turn of it round the second and third simples, It will be observed that the board H is rounded at the back; this is for the purpose of having all the simples at an equal distance from the pin G when they are tacked up by the lash twine, and consequently a more regular shed will be produced when they are drawn in the process of weaving. The method of fastening the head to the lash is to loop the cord for the head, which should be double, round the gut cord, then knot the two ends of it together, and take this knot through the snitch formed on the end of the lash, and when the snitch is drawn tight the knot prevents the head from slipping out. In weaving with the draw loom two persons are required—the weaver, who works over the ground treadles, throws the shuttle, beats up the weft, &c.; and the drawboy, who takes the lashes in succession as he draws them down by the bridle, and by pulling out the simples raises the harness and holds it in this position till the weaver has worked as many shots as are required to be given to each draught. When some thousands of twines were required for the harness, and with a simple of three or four hundred cords, the weight and friction made it very severe work for the drawboy. To assist him a fork, as shown at V, No. 2, Fig. 3, was used. It was made to run to and fro on a carriage, so that when the simples were drawn forward by the lashes, one spike of the fork could be run in behind those drawn forward, while the other spike was in front of them. When the fork was depressed, till the handle T came to the position shown by the dotted lines, it drew down the simple cords, and they could easily be held in that position till a change of draught was required. When the mounting of the draw loom was very extensive, it was necessary to employ from two to ten pulley-boxes and as many drawboys, so that it is not surprising that many endeavours were made to work without the aid of a drawboy. One of these machines, known as the ‘Parrot’ or ‘Pecker,’ is shown in Fig. 5. It is wrought by the treadles T, which are attached to the marches M, and these are connected by the pulley P, on the rocking shaft R, by a cord which passes To avoid confusion the beads are not shown on the front cords in No. 1. CROSS’S COUNTERPOISE HARNESSAbout the year 1816 Mr. James Cross, of Paisley, invented a machine to do away with the drawboys. This machine is fully described by Murphy and Gilroy in their works on weaving. Only the general principle of it will be given here, as an introduction to the jacquard. The detail of drawing the lashes and treading, though ingenious, is not of any practical importance now, and it requires rather a lengthy description to explain it. The harness F is the same as in the common draw loom till it reaches the tail cords, where the counterpoise apparatus commences. The framing B B (Fig. 6) of this machine is supported by the carriage A A, which rests on the capes or top rails of the loom. In this frame are two boards, C and D, perforated with holes corresponding in number with the tie of the harness or cords in the simple. The top board is called the suspension board, and is mortised into the bar E. From this board the harness hangs, the neck being taken up through the holes in it, and fastened above them. The lower board, D, which is mortised into the bar G, is called the neck board, or directing board, as it keeps the harness in its proper place. H and K are two other boards, perforated as shown in Fig. 7, mortised into the sliding bars I and L respectively; these are called the trap boards, M, M and N, M are four Some time after an improvement was made upon this machine which was known as THE COMB DRAW LOOMThis machine appears to have been invented in both Scotland and Ireland, as Gilroy describes it as an invention of Dr. McLaughlin, of Ballyshannon, County Donegal; and Murphy describes a similar machine invented by Mr. Bonnar, of Dunfermline. The machine is shown in Fig. 8. A, A are the posts of the loom, and B B the top rail; C C is the framing of the machine. The harness G, G is suspended from the suspension board D, and passes through the guide board E and the cumber board F. The upper portion of the harness is composed of tail or knot cords, as in Cross’s machine. From each of the tail cords a simple cord, H, extends horizontally over the weaver’s head, and is fastened to the board I. The lashes K hang from the simples over the The lash cords have a knot or bead on them, so that when drawn they can be held in the cuts of the board L, also shown in plan at L (Fig. 9). M, N (Fig. 8) is a side view of the comb and handle, or lever, shown in plan at M, N (Fig. 9). S is a cord or chain attached to the end of the lever M, and passing down to a treadle. When the weaver draws one of the knobs, the tail cords connected with the simples in this lash are drawn between the teeth of the comb, as shown by the dotted lines in Fig. 8. He then depresses the treadle, which raises the comb, and the harness along with it; he holds the treadle down with his left foot, and works over the ground treadles with his right one. The comb is recovered or counterbalanced by the cord O, which passes from the comb through the board P, and has a weight, R, suspended on it. D (Fig. 9) is a plan of the boards D, E, F and I (Fig. 8). THE BARREL OR CYLINDER LOOMThis machine was introduced by Mr. Thomas Morton, of Kilmarnock. The harness and tail or knot cords are arranged similarly to those in the comb draw loom; but instead of the simple cords for drawing out the tail cords, each tail cord in the barrel loom passes through a slide, or horizontal wire. The points of these slides are acted upon by the pattern cylinder or barrel, and those held back press out their tail cords from the others, and the knots on these tail cords are caught by the teeth on the comb or roller, and the harness raised. The pattern is arranged upon the barrel much in the same way as a tune is arranged on the cylinder of a barrel organ or musical box. Each of these staples represents so many lines of the design paper, or so many lashes or draughts. The pattern is ruled out and painted on the barrel, and staples are driven into it so as to cover the painted squares of the pattern. The barrel is so arranged on the loom that exactly the space of one line of the design paper is turned round for each draught, and the slides are drawn back by cords attached from their ends to a roller when the shift of the barrel is being made. B is a section of the comb; it is a cylinder with teeth, C, like a parrot’s beak fixed to it. The teeth are made of this shape to hold the knot cords when they are caught by them, and they rise or fall as the roller is rocked upwards or downwards by a treadle. Whilst these improvements on the draw loom were being made in this country for the purpose of producing a convenient method of harness weaving, the French were endeavouring to obtain the same result, but on a different principle, and their method has proved successful. In 1725 M. Bouchon employed a band of pierced paper, pressed by hand against a row of horizontal needles, so as to push back those which were opposite the blank spaces, and thus bring loops on the extremities of vertical wires into connection with a comb-like rack below, which, being depressed, drew down the wires, pushed on the pins in it, and raised the harness. Fig. 11 is a sketch of a model of this loom in the Conservatoire des Arts, Paris. A is the pulley-box with two rows of pulleys in it; B the tail cords; C the simples, tied to rings on their upper ends, which run on the tail cords at B; the other ends of the simples pass over a small roller at D to prevent them rubbing against the side of the loom, then down through the hole board F, under which they are tied to wire hooks or loops, as shown under A (Fig. 11a). Next these wires pass through the needle box G, also shown at B, Fig. 11a, and down to the Fig. 11b is a back view of the mounting. A shows where the simples are connected with the tail cords P; B shows the connection of the tail cords with the harness; C is the cumber board; D the mails and E the leads. F and K are the two rollers for the paper, H the needle box, and I the comb. This was the first attempt at forming the pattern by means of perforated paper acting upon needles and wires. In 1728 M. Falcon adopted a chain of perforated cards in lieu of the perforated paper, and placed his horizontal wires or needles in several rows or ranks, thereby admitting the use of a greater number Fig. 12 is a sketch from a model of his loom, also in the Conservatoire des Arts. The principle of it is much the same as the preceding. A is the pulley box for four rows of pulleys, B the connection of the simple with the tail cords, C the hole board for the simple to pass through and also the support for the cylinder H, D is the needle box, E the comb or griffe, F the levers for drawing down the griffe, and G the treadle. The cards are laced in a chain and pass over the cylinders I and H, but they are pressed against the needles by a hand bar, similar to that used by Bouchon. There are two racks or receptacles for holding the cards, as shown. The cylinders H and I are simply used as rollers to support the cards, and not for pressing them against the needles, as in the jacquard. Figs. 12a and 12b give detailed views of the hooks, etc., for drawing the harness: the letters in both refer to the same parts as are marked with similar letters in Fig. 12. The simples B are tied to loops on the hooks under the hole board C. In Fig. 12b it will be clearly seen how In 1746 the accomplished mechanician, Vaucanson, altogether dispensed with the cumbrous tail cords and simple of the draw loom, and made the draw-boy machine completely self-acting by placing the hooks upright on the top of the loom, and hanging the harness from them. This loom may be seen in the Conservatoire des Arts, as well Joseph Marie Jacquard, a working mechanic of Lyons, having invented a fishing net loom, turned his attention to improving the means of drawing the harness in looms for figured weaving, about 1790. A model of a machine by him, dated 1790, to dispense with the drawing of the harness, is in the Conservatoire des Arts. It is made with cords and rollers, and has no resemblance to the machine bearing his name. He was brought to Paris to repair Vaucanson’s loom about 1804, and it appears to be then that he combined the best qualities of the machines of his predecessors, and produced the jacquard, a model of which, dated 1804, is in the Conservatoire des Arts. This is very much like our present jacquard, but with four rows of hooks and needles made similar to those of Vaucanson, Fig. 13. He dispensed with Vaucanson’s cylinder and band of paper, and used instead a square prism with a chain of cards passing over it. The cylinder (or prism) he set in a frame or carriage, made to run on four wheels or pulleys on the top of the frame of the loom. The carriage is drawn out by depressing a treadle, and brought back again to press the FRENCH DRAW LOOMShortly after the introduction of Cross’s counterpoise harness, a machine was imported from France, which is shown in Fig. 14, and described in Murphy’s ‘Art of Weaving’ as a French draw loom. This machine far surpassed any attempts at the improvements at the draw loom that had hitherto appeared, in simplicity of construction and operation. From the neck upwards the harness is similar in construction to Cross’s counterpoise, having the knot cords arranged in the same manner, but with only one trap board. Instead of the cumbrous tail, the knot cords are acted upon by wires or needles, on each of which is a loop, through which one of the knot cords passes. D is the cylinder or barrel, perforated with holes, as in the common jacquard cylinder, and C, C shows the chain of cards for forming the pattern; E is the lever for raising the trap board, to which it is connected by means of pieces of iron at each side, with a bar across between them, to the centre of which the lever is connected with a piece of wire. O O are crossbars of wood, with holes in their centres, through which run pieces of strong iron wire, which are fixed into the trap board at each end to keep it steady while in operation. There is no spring box for the needles as is now used in the jacquard, but into the crossbar or frame F is inserted a flat piece of wood moving on springs, which yields to the pressure of the needles that are forced back by the barrel, and recovers them again when the barrel is withdrawn. The lever E is drawn down by the cord H, attached to a treadle, when the trap board is to be raised, and the barrel is drawn back by the cord G, which is attached to another treadle. The barrel is pressed against the needles by springs, and when it is Whether this machine was Jacquard’s invention or not, I have not been able to ascertain; but Gilroy states that Jacquard’s first machines were made with cords and trap boards, like Cross’s counterpoise machine. It is also recorded that William Jennings, of Bethnal Green, invented a machine, similar to the above, about 1830, as an improvement on the jacquard, on account of its simplicity, as the latter appears to have given the weavers some trouble, and notice was taken of his machine by the Society of Arts. Machines similar to the above are still in use for hand-loom work, and answer very well. They have also been used for power looms, but |