This instrument, called in Latin hydrometrum, hygroscopium, hygrobaroscopium, hydroscopium, areometrum, and baryllion, serves to determine the weight or specific gravity of different fluid masses, by the depth to which it sinks in them. The laws respecting the comparative specific gravity of fluids and solid bodies immersed in them were discovered by Archimedes, when he tried the well-known experiment, by order of Hiero king of Sicily, to find the content of a golden crown, made for that sovereign. Upon these is founded the construction of the hydrometer; and it is not improbable that Archimedes, who was killed in the year 212 before the Christian Æra, was the inventor of it, though no proofs to warrant this conjecture are to be found in the writings of that great man, or in those of any other author. The oldest mention of the hydrometer occurs in the fifth century, and may be found in the letters of Synesius to Hypatia. Of the lives of these two persons I must here give some anecdotes, as they deserve to be known on account of the singular fate which attended them. Hypatia was the daughter of Theon, a well-known mathematician of Alexandria, some of whose writings are still extant. By her father she was instructed in mathematics, and from other great men, who at that time abounded in Alexandria, she learned the Platonic and Aristotelian philosophy, and acquired such a complete knowledge of these sciences, that she taught them publicly with the greatest applause. She was young and beautiful, had a personable figure, was sprightly and agreeable in conversation, though at the same time modest; and she possessed the most rigid virtue, which was proof against every temptation. She conducted herself with so much propriety towards her lovers, that they never could obtain more than the pleasure of her company and of hearing her discourse; and with this, which they considered as an honour, they were contented. Those who wished to intrude further were dismissed; and she destroyed the appetite of one who would not suffer her to philosophise, by means of some strong preparation, which, as far as I know, remained a secret. She was The patriarch of Alexandria, at the time when she lived, was Cyril, whose family for a hundred years before had produced bishops, who were of more service to their relations than to the church. This prelate was a proud, litigious, vindictive and intolerant man, who thought every thing lawful which he conceived to be for the glory of God; and who, as prosecutor and judge, condemned Nestorius without hearing his defence. In the city of Alexandria, which was then very flourishing on account of its commerce, the emperor allowed greater toleration than he imagined could be justified to the clergy in any other place; and it contained a great many Jews, who carried on an extensive trade, as well as a number of pagan families who were of service to the city, or at least did it no harm. This, in the eyes of Cyril, was not proper; he would have the sheep-fold clean, and the Jews must be banished. Orestes, however, the governor, who was a man of prudence, and better acquainted with the interests of the city, opposed a measure that was likely to be attended with mischief, and he even caused to be condemned to death a Christian profligate, who had done some injury to the Jews. This malefactor was, by the order of Cyril, buried in the church as a martyr; and he immediately collected five hundred monks, who ill-treated Orestes in the streets, and excited an insurrection among the people, who plundered the unfortunate Jews, and expelled them from a city in which they had lived since the time of Alexander the Great. Cyril, observing one day a great number of horses and servants belonging to persons of the first rank, before a certain house in the city, inquired the cause of their being assembled in that manner. He was informed that the house was the habitation of the celebrated female philosopher Hypatia, who, on account of her extensive learning and eminent talents, was visited not only by people of the highest distinction, but even by the governor himself. This was sufficient Among these was Synesius, of a noble pagan family, who cultivated philosophy and the mathematics with the utmost ardour, and who had been one of her most intimate friends and followers. On account of his learning, talents, and open disposition, he was universally esteemed, and he had been employed with great success on public occasions of importance. The church at Ptolemais at length wished to have him for their bishop. After much reluctance he accepted the office, but on condition that they should not require him to acknowledge the resurrection of the dead, which he doubted. The people having consented to allow him this indulgence, he suffered himself to be baptized, and became their bishop. He was confirmed by the orthodox patriarch Theophilus, the predecessor of Cyril, to whose jurisdiction Ptolemais belonged; and he afterwards renounced his errors, and declared himself convinced of the truth of the resurrection. This learned man showed his gratitude to Hypatia, by the honourable mention which he made of her in some letters that are still preserved among his writings. In his fifteenth letter, he tells Hypatia that he was so unfortunate, Petavius, who published the works of Synesius in the year 1640, acknowledges in his annotations, that this passage he did not understand. An old scholiast, he says, who had added some illegible words, seemed to think that it referred to a water-clock; but this he considers improbable, as a clepsydra was not immersed in water, but filled with it. He conjectures, therefore, that it may allude to some such instrument as that which Vitruvius calls chorobates. The latter however was employed for leveling; and it appears that Synesius, who complains of the bad state of his health, could not think of leveling. Besides, no part of the description in Vitruvius agrees with that which is given in so clear a manner by Synesius. Petau published his edition of the works of this philosopher in the time of Peter de Fermat, conseiller au parlement de Toulouse, a man of great learning, who was an excellent mathematician, and well-acquainted with antiquities and the works of the ancients. We have by the latter a commentary upon some obscure passages of AthenÆus, annotations on the writings of Theon of Smyrna, and emendations from a manuscript to the Stratagemata of PolyÆnus, which may be found also in his Miscellanies. Mursinna, in his edition of the same author, has added them to the end of the preface. As Fermat was often consulted respecting difficult passages of the ancients, he could not be unacquainted with that in the new edition of Synesius. He drew up an explanation of it, and gave it to a friend who was then about to publish a French translation of Bened. Castelli’s book, Della Misura dell’Acque Correnti, and who caused it to be printed along with that work. Fermat died in the year 1665. After his death his It is impossible, says he, that the hydroscopium could be the level or chorobates of Vitruvius, for the lines on the latter were perpendicular to the horizon, whereas the lines on the former were parallel to it. The hydroscopium was undoubtedly a hydrometer of the simplest construction. The tube may be made of copper, and open at the top; but at the other end, which, when used, is the lowest, it must terminate with a cone, the base of which is soldered to that of the tube. Lengthwise, along the tube, are drawn two lines, which are intersected by others, and the more numerous these divisions are, the instrument will be so much more correct. When placed in water, it sinks to a certain depth, which will be marked by the cross lines, and which will be greater in proportion to the lightness of the water. A figure, which is added, illustrates this explanation more than was necessary. When a common friend of Fermat and Petavius showed it to the latter, he considered it to be so just, that he wished to have an opportunity of introducing it in a new edition. Mersenne, on the other hand, entertains some doubt415 respecting this instrument, though he does not mention Fermat, with whom he was well-acquainted; for in the dispute which the latter had with Descartes, Mersenne was the bearer of the letters that passed between them, as we learn from the Life of Descartes, by Baillet. His objections however are of little weight. Why should Synesius, asks Mersenne, consider himself unfortunate, because he had not a hydrometer? It may be here replied, that he was in an infirm state, and that the physicians seem to have ordered him to drink no water but what was pure and light. We know that in former times, when so many artificial liquors were not in use, people were accustomed, more than at present, to good water. We read in the works of the ancient physicians, such as Galen and Celsus, directions how to examine the lightness and purity of water. He might have tried it, says Mersenne, with a For the explanation of Fermat one may produce a still stronger testimony, with which he seems not to have been acquainted. It can be proved that this instrument was used in the next, or at least in the sixth century. Of that period, we have a Latin poem on weights and measures, which contains a very just description of a hydrometer. The author, in manuscripts, is called sometimes Priscianus, and sometimes Rhemnius Fannius PalÆmon; but we know, from grounds which do not belong to this subject, that the former was his real name. Two persons of that name are known at present. The one, Theodore Priscian, was a physician, and lived in the time of the emperor Valentinian, towards the end of the fourth century. As more physicians have written on weights and measures, with which it is indispensably necessary they should be acquainted, one might conjecture that this Priscian was the author of the above poem. The rest of his writings, however, still preserved, are in so coarse and heavy a style, that one can scarcely ascribe to him a work which is far from being ill-written; especially as it is nowhere said that he was a poet. With much more probability may we consider as the author the well-known grammarian Priscian, who died about the year 528. This poem has been often printed, and not unfrequently at the end of Q. Sereni Samonici De Medicina PrÆcepta. Be the author who he may, this much is evident, that he was acquainted with the hydrometer of Synesius, and has described it in a very clear manner. “Fluids,” says he, “are different in weight, as may be proved by the specific gravity of oil and honey compared with that of pure water;” and the given proportion agrees almost with that found by modern experiments. “This,” adds he, “may be discovered by an instrument,” which he thus describes:—“It consists of a thin metallic cylinder made of silver or copper, about as large as the joint of a reed between two knots, to the end of which is added a cone. This cone makes the lower end so heavy, that the instrument, without sinking or floating on the surface, remains suspended perpendicularly in the water. Lengthwise, upon the cylinder, is drawn a line, which is divided by cross lines into as many parts as are equal to the weight of the instrument in scripla. If placed in light fluids, more of the divisions will be covered than when put into heavy fluids; or it sinks deeper into those which are light than into those which are heavy. This difference of gravity may be found also,” continues he, “by filling vessels of equal size with the fluids and weighing them; for the heavier must then weigh most; but when one takes an equal weight of two fluids, the lighter will occupy more space than the heavier. If twenty-one divisions of the instrument are covered in water, and twenty-four in oil, and if one take twenty-four scripla of water, twenty-one scripla of oil only can be contained in the space occupied by the water.” Such is the manner in which Professor Klugel has conjectured the meaning of the author from hydrostatic principles; though neither he nor Wernsdorf has ventured to give a literal translation of the words which ought to convey this explanation. But however obscure they may be, it evidently appears that they allude to a hydrometer. This poem was once published together with Celsus De Re Medica, in 1566, by Robert Constantin, who died at an advanced age in 1605, and who added a few, but excellent notes, which have been inserted by Wernsdorf in his edition. This Constantin seems to have known that the instrument of Those are mistaken likewise, who say that this instrument was called also baryllium. That word, as far as I have been able to learn, occurs only in Synesius, who expressly tells us that the small heavy cone alone was meant by it. In the same manner has it been understood by Constantin. In the Dictionary of Basle it is said to be hydroscopii pars; and in Stephen’s Dictionary it is explained by pondusculum, as well as in that of Ernest, where it is given as the diminutive of baros. It signified therefore the heavy part of the hydrometer only. It is equally erroneous when one says, with Muschenbroek and others, that those who among the Romans made it their employment to examine the quality of water with the hydrometer, were called baryllistÆ or barynilÆ. These words do not occur in the works of the ancient Latin authors, nor in any of the completest dictionaries. We read only the following passage in some editions of the Commentary of Servius upon Virgil: “Scrutatores et repertores aquarum (aquilices I think we may with certainty believe that the hydrometer was not known to Seneca, Pliny, or Galen, who died about the end of the second century. Were not this the case, it would certainly have been mentioned by the first, where he speaks so minutely of the specific gravity of hard and fluid bodies417; by the second, where he says that the weight of water was ascertained by a common balance418; and by the last, where he gives directions how to discover its lightness. Galen adds, that in his time a method had been invented of determining the quality of salt-lye by placing an egg in it, and observing whether it floated419. Have we not reason to think that on this occasion the hydrometer must have occurred to him had it been then used? But however well-known it may have been in the fifth century, it seems that it was afterwards entirely forgotten, and that towards the end of the sixteenth it was again for the first time revived or invented anew. To George Agricola it was scarcely known; for where he speaks of the weight of different kinds of water, and particularly of that of salt springs420, he does not mention it. Constantin, however, who lived at the same time, must have been acquainted with it, I am inclined to think that the first account of the hydrometer being again brought into use must be found in the oldest German books on salt-works. It is at any rate certain that from these the modern philosophers became first acquainted with it. One of the earliest who has described it is the Jesuit Cabeus, who wrote about the year 1644421; but he confesses that he acquired his information from a German treatise by Tholden, whom Kircher422 calls a German artist. He was however not properly an artist. He was a native of Hesse; a good chemist for his time; and resided about the year 1600 or 1614 as overseer of the salt-works at Frankenhausen in Thuringia. His treatise, which Cabeus had in his possession, was entitled Tholden’s Haligraphia, printed at Leipsic in 1603. Another edition, printed at the same place in 1613, is mentioned by Draudius; but at present I have not been able to find it; and can say only from Cabeus and Leupold, that Tholden’s hydrometer had a weight suspended to it; and that he speaks of the instrument not as a new but a well-known invention, and on that account has described it only imperfectly. Kircher, whose works were generally read, seems to have principally contributed towards making it publicly known; and Schott423, Sturm424 and others, in their account of it, refer to his writings. The artists at Nuremberg, who worked in glass, and who constructed a great many hydrometers which were everywhere sold, assisted in this likewise. One, above all, made by Michael Sigismund Hack, was highly valued about the beginning of the last century, as we are told by J. Henry Muller, professor at Altorf. Of this artist, often mentioned by Sturm and other philosophers, an account has been given by Doppelmayer. He died in 1724. Many improvements, or perhaps only alterations, have been made in this instrument in later times by a variety of artists. The task of collecting these completely in chronological [The principal hydrometer now in use is that of Sykes, this is adopted in estimating excise duties on liquids. That of BaumÉ is principally employed abroad. Those of Beck or Cartier are but rarely used. These instruments differ merely in their graduation. Sykes’s plan of increasing the extent of the indications without enlarging the instrument is ingenious. It is effected by means of a number of weights which may be appended as collars to the stem of the instrument. A useful method of ascertaining specific gravities for commercial purposes, consists in using a series of glass beads, previously adjusted and numbered. When thrown into any liquid, the heavier ones sink and the lighter float on the surface; but the one which has the same density as the liquid will remain indifferent, or perhaps slightly below the surface. The specific gravity is then found by the number with which it is marked.] FOOTNOTES413 A fuller account of Hypatia may be found in Menagii Histor. Mulier. Philosoph. Lugd. 1690; Bruckeri Hist. Crit. Philos. ii. p. 351; and Wolfii Fragmenta Mulierum GrÆc. Gott. 1739, 4to. 414 Varia Opera Mathematica D. Petri de Fermat, TolosÆ, 1679, folio. 415 Cogitata Physico-Mathem. Par., 1644, and in PhÆnomena Hydraulica. 416 On Georg. i. 109. These words are quoted by Emmenessius, the editor of the Variorum edition of Virgil, but in the edition of Servius, Venetiis, 1562, fol., they are not to be found. The Commentary of Servius may at present be no longer indispensable for explaining Virgil; but it deserves to be printed once more as completely and accurately as possible. It contains much useful information, as well as many fragments of works now lost; and on this account cannot well be entirely dispensed with. 417 QuÆst. Nat. iii. 25, p. 726. 418 Hist. Nat. xxxi. 3, sect. 23, p. 552.—Athen. ii. p. 46.—Plutarchi QuÆst. Nat. 7. 419 De Simplic. Med. Facultatibus, iv. 20. 420 De Natura eorum quÆ effluunt ex Terra, lib. ii. p. 124. 421 Philosophia Experimentalis, sive Commentaria in Aristotelis Meteorolog. lib. ii. textus 26, quÆst. 2, tom. ii. p. 158, b. 422 Mundus Subterraneus, vol. i. p. 254. 423 Cursus Mathemat. p. 455, icon. 20. 424 Collegii Experiment. pars ii. Norimb. 1715, 4to. 425 Nuovi Ritrovamenti. Roma, 1696, fol. 426 Philosoph. Transact. 1675: where an engraving is given of all the parts. 427 Journal des Observations Physiques et Math. Par. 1714, 4to. 428 Philosoph. Transact. No. 384, p. 140; and No. 413, p. 277. 429 Comment. Acad. Petrop. v. p. 274. 430 In his Versuchen. Halle, 1737, 8vo, i. p. 556. 431 Theatrum Hydrostaticum. |