Edward A. Locke had long been seeking a simple watch adapted to easy manufacture and a selling price of three to four dollars. While on a trip to Washington his attention was drawn to the Hopkins watch by William D. Colt of Washington. A square on arbor C at the back of the watch permits winding the main spring, which attaches to the largest diameter of C, a ratchet or winding click being supplied just under support F. The inner or front part B of the composite arbor projects from the front of the movement and revolves at the speed of the barrel arbor, which speed is not specified. Also, looking at the perspective view, we see that while the chronometer escapement has been retained, the balance has been placed eccentrically to make room for the center arbor. The balance now describes an orbit around the center of revolution. No driving train is shown, it being irrelevant to the patent, but there seems to be ample room for two intermediate wheels and their pinions between the escape wheel and the train cock boss, seen at the upper right in the perspective view of figure4. Adding one more wheel and pinion to the train would have the effect of reducing the number of revolutions required of the spring barrel. We have seen from examination of the patent model of the Hopkins rotary that this was necessary not only to reduce the number of turns of the main spring and barrel but also to reduce the force transmitted to the escapement. There seems little reason from the foregoing observations and considerations to doubt that these modifications had been realized by the time of this patent. Again no dial gearing is shown. If the need for special gearing existed at this time it seems strange that it was not covered by patent as was done in the later patent Companion patent 165830 (see fig. 5) covers a mechanism to prevent overbanking of the balance wheel, primarily of a chronometer escapement. This, of course, was aimed at making it possible to use the escapement in connection with a mainspring of greatly varying power. We have seen that this condition of uneven power existed in the first Hopkins watch. While the condition was greatly improved in the second model (seen in fig. 4), it was surely present to some extent, as it is associated with every spring. Overbanking protection may well have continued to be necessary, particularly if the gear ratio between escapement and barrel was low enough to permit hourly rotation of the barrel. The features covered by this patent were originally submitted as part of what later became patent 165831. Examination of the original manuscript patent file These two patents, which actually started out as one, appear to represent the watch as it was when Hopkins went to Waterbury, Connecticut, where he again met Edward A. Locke. They submitted this improved watch model to the Benedict and Burnham Manufacturing Co., which advised not manufacturing it until it was further developed. Hopkins went with his watch from there to Boston, where he conferred with George Merritt who, like Locke, was interested How long this period of development and experimentation required is unreported. It could hardly have started before early June of 1875, when application was made for the patent (165830) to prevent overbanking. The cash book of William B. Fowle of Auburndale, Massachusetts, Here, where the story of the Hopkins watch diverges from the interests who later brought out the rival Waterbury watch, it seems appropriate to call the reader’s attention to the basic points of novelty and merit in the Hopkins watch which carried over to what became the Waterbury, somewhat as an hereditary characteristic passes from generation to generation. Previous writers have realized that one of these watches led to the other and have grouped them together because of the rotating feature which they shared in common. Beyond this point they have treated the watches as though they had nothing in common. Actually several basic features of the Hopkins watch existed in both: the long narrow spring in a barrel approximately filling one side of the watch case, a train rotating in the center of the watch and driven by a planetary pinion in mesh with a gear fixed to the stationary part of the watch, a slow beat escapement, and probably the hourly rotation of the train and escapement. When these details appeared in the first watches manufactured for Messrs. Locke and Merritt by the Benedict and Burnham Manufacturing Co. and later the Waterbury Watch Co., they were vastly changed in detail and much better adapted to mass production, although still basically the same. The story of Hopkins’ rotary watch now enters an entirely new setting with new financial backing which, however, had no apparent experience or background |