The sugars of commerce may be conveniently classified into two varieties, viz., sucrose (cane sugar or saccharose) and dextrose (grape sugar or glucose). The former, which is the kind almost exclusively employed for domestic uses, is chiefly obtained from the sugar cane of the West Indies and American Southern States (Saccharum officinarum), and, in continental Europe, from the sugar beet (Beta vulgaris). A comparatively small quantity is manufactured in the United States from the sugar maple (Acer saccharinum), and from sorghum (Sorghum saccharatus). Cane Sugar (C12 H22 O11).—Among the more important chemical properties of cane sugar are the following:—It dissolves in about one-third its weight of cold water—much more readily in hot water—and is insoluble in cold absolute alcohol. From a concentrated aqueous solution it is deposited in monoclinic prisms, which possess a specific gravity of 1·580. Cane sugar is characterised by its property of rotating the plane of a ray of polarised light to the right; the rotary power is 66°·6. Upon heating its solution with dilute mineral acids, it is converted into a mixture termed “invert sugar,” which consists of equal parts of dextrose and levulose. The former turns the plane of polarised light to the right, the latter to the left; but owing to the stronger rotation exerted by the levulose, the combined rotary effect of invert sugar is to the left, i. e., opposite to that possessed by cane sugar. Invert sugar exhibits the important property of reducing solutions of the salts of copper, which is not possessed by pure cane sugar. Cane sugar melts at 160°; at a higher temperature (a) C12 H22 O11 + H2O = 2 C6 H12 O6. The varieties of cane sugar usually met with in commerce are the following:— 1. Loaf sugar, consisting either of irregular fragments, or (more often) of cut cubes. 2. Granulated sugar. 3. Soft white sugar. 4. Brown sugar, varying in colour from cream-yellow to reddish-brown. Molasses is a solution of sugar, containing invert sugar, gummy matters, caramel, etc., which forms the mother-liquor remaining after the crystallisation of raw cane sugar; the name “syrup” being commonly applied to the residual liquor obtained in the manufacture of refined sugar. Dextrose (C6 H12 O6), occurs ready-formed in grape juice, and in many sweet fruits, very frequently associated with levulose; it is also contained in honey, together with a small amount of cane sugar. As already mentioned, it constitutes an ingredient of the product obtained by the action of acids and ferments upon cane sugar. For commercial purposes, glucose is prepared by treating grains rich in starch, with dilute acids. In France and Germany, potatoes are used in its manufacture; in the United States, Indian corn or maize is almost exclusively employed. The processes used consist substantially in first separating the starch from the grain by soaking, grinding, and straining, then boiling it, under pressure, with water containing about 3 per cent. of sulphuric acid, neutralising the remaining acid with chalk, decolorising the solution by means of animal charcoal, and concentrating it in vacuum pans. In Dextrose is soluble in 11/5 part of cold water, and is much more soluble in hot water. It has a dextro-rotary power of 56°. When separated from its aqueous solution, it forms white and opaque granular masses, but from an alcoholic solution, it is obtained in well-defined, microscopic needles, which fuse at 146°. Two parts of glucose have about the same sweetening effect as one part of cane sugar. The chief commercial varieties of American glucose are the following:—
Maltose and levulose are isomers of dextrose. The former is prepared by the action of malt or diastase upon starch. It has a dextro-rotary power of 150° and its property of reducing copper salts is only about 60 per cent. of that of dextrose. It is converted into the latter compound upon boiling with dilute sulphuric acid. Levulose, as previously stated, is formed, together with dextrose, from cane sugar by treatment with dilute acids or with ferments. It turns the plane of a ray of polarised light to the left, its rotary power varying considerably at different temperatures. Lactose, or milk sugar, has already been referred to under the head of Milk. It is isomeric with cane sugar, possesses a dextro-rotary power (58°·2), and undergoes fermentation when mixed with yeast, and reduces alkaline copper solutions, but in a different degree from glucose. Many of the substances frequently enumerated as being used to adulterate sugar are at present very seldom employed. The usual list includes “glucose” (often meaning invert sugar), sand, flour, chalk, terra alba, etc. Loaf sugar is almost invariably pure, although its colour is sometimes improved by the addition of small proportions of various blue pigments, such as ultramarine, indigo, and Prussian blue. The presence of ultramarine was detected in about 73 per cent. of the samples of granulated sugar tested in 1881 by the New York State Board of Health. Tin salts The average sugar-house syrup has the following composition:—
Dr. W. H. Pitt, in the Second Annual Report of the New American Grape Sugar Co.’s Syrup.
Confectioners’ Glucose.
It is stated that a large proportion of the American maple syrup and maple sugar found on the market, consists of raw sugar, flavoured with the essential oil of hickory-bark, for the manufacture of which letters patent have been granted. Analysis of Sugar.—The examination of sugar is ordinarily confined to the estimation of the water, ash, and determination of the nature of the organic matters present. The proportion of water contained in a sample is found by drying it for about two hours in an air-bath, at a temperature of 110°. Moist and syrupy sugars, such as muscovadoes, are advantageously mixed with a known weight of ignited sand before drying. The ash is determined either by directly incinerating a few grammes of the sugar in a tared platinum capsule, or by accelerating the process of combustion by first moistening the sample with a little sulphuric acid. In this case the bases will naturally be converted into sulphates, and a deduction of one-tenth is usually made from the results so obtained, in order to reduce it to terms
Insoluble mineral adulterants are readily separated by dissolving a rather considerable amount of the sample in water and filtering. In this manner the presence of sand, terra alba, and foreign pigments may be recognised. The determination of the character of the organic constituents of commercial sugars is effected, either by chemical or by physical tests, and, in some instances, by a combination of these methods. The presence of such adulterants, as flour or starch, is very easily detected upon a microscopic examination of the suspected sample. If cane sugar, containing grape sugar, is boiled with water, to which about 2 per cent. of potassium hydroxide has been added, the solution acquires a brown colour. Upon mixing a solution of pure cane sugar with a solution of cupric sulphate, adding an excess of potassium hydroxide, and boiling, only a slight precipitation of red cupric oxide takes place. Under the same conditions, grape sugar at once produces a copious green precipitate, which ultimately changes to red, the supernatant fluid becoming nearly or quite colourless. A very good method for the quantitative estimation of grape sugar when mechanically mixed with cane sugar, is that of P. Casamajor. It is executed by first preparing a saturated solution of grape sugar in methylic alcohol. The sample to be tested is thoroughly dried, and then well agitated with the methylic alcohol solution, in which all cane sugar will dissolve; As this preparation is liable to decompose upon keeping, it is advisable to first prepare cupric sulphate solution by dissolving exactly 34,640 grammes of the salt in 500 c.c. of distilled water, and then make up the Rochelle salt solution by dissolving 68 grammes of sodium hydroxide, and 173 grammes of Rochelle salt in 500 c.c. of water, the solutions being kept separate. When required for use, 5 c.c. each of the copper and Rochelle solutions (corresponding to 10 c.c. of Fehling’s solution) are introduced into a narrow beaker, or a porcelain evaporating dish, a little water is added, and the liquid brought to the boiling point. The sugar solution under examination should not contain over 0·5 per cent. of glucose. It is cautiously added to the hot Fehling’s solution from a burette until the fluid loses its blue colour (see p. 37). The number of c.c. required to completely reduce 10 c.c. of Fehling’s solution, represents 0·05 gramme of grape sugar. The foregoing volumetric method is sometimes applied gravimetrically by adding a slight excess of Fehling’s solution to the sugar solution, collecting the precipitated cupric oxide upon a filter and weighing, after oxidation with a few drops of nitric acid; or, it may be dissolved, and the copper contained deposited by electrolysis, in which case the weight of copper obtained, multiplied by 0·538, gives the equivalent amount of glucose. The proportion of cane sugar in a sample of raw sugar can be determined by first directly estimating the proportion of invert sugar contained by means of Fehling’s solution, as just described. The cane sugar present is then inverted by dissolving one gramme of the sample in about Commercial cane sugar is, however, generally estimated by the instrument known as the saccharimeter or polariscope. In order to convey an intelligent idea of the physical laws which govern the practical working of the polariscope, it will first be necessary to refer to the subject of the polarisation of light. The transformation of ordinary into polarised light is best effected either by reflection from a glass plate at an angle of about 56°, or by what is known as double refraction. The former method can be illustrated by Fig. 1, Plate X., which represents two tubes, B and C, arranged so as to allow the one to be turned round within the other. Two flat plates of glass, A and P, blackened at the backs, are attached obliquely to the end of each tube at an angle of about 56°, as represented in the figure. The tube B, with its attached plate, A, can be turned round in the tube C without changing the inclination of the plate to a ray passing along the axis of the tube. If a candle be now placed at I, the light will be reflected from the plate P through the tube, and, owing to the particular angle of this plate, will undergo a certain transformation in its nature, or, in other words, become “polarised.” So long as the plate A retains the position represented in the figure, the reflected ray would fall in the same plane as that in which the polarisation of the ray took place, and an image of the candle would be seen by an observer stationed at O. But, suppose the tube B to be turned a quarter round; the If a ray of common light be made to pass through certain crystals, such as calc spar, it undergoes double refraction, and the light transmitted becomes polarised. The arrangement known as Nicol’s prism, which consists of two prisms of calc spar, cut at a certain angle and united together by means of Canada balsam, is a very convenient means of obtaining polarised light. If two Nicol’s prisms are placed in a similar position, one behind the other, the light polarised by the first (or polarising) prism passes through the second (or analysing) prism unchanged; but if the second prism be turned until it crosses the first at a right angle, perfect darkness ensues. While it would exceed the limits of this work to enter fully upon the theoretical explanations which are commonly advanced concerning the cause and nature of this polarised, or transformed light, it may be well to state here that common light is assumed to be composed of two systems of beams which vibrate in planes at right angles to each other, whereas polarised light is regarded as consisting of beams vibrating in a single plane only. If, now, we imagine the second Nicol’s prism to be made up of a series of fibres or lines, running only in one direction, these fibres would act like a grating and give free passage to a surface like a knife blade only when this is parallel to the bars, but would obstruct it if presented transversely. This somewhat crude illustration will, perhaps, serve to explain why the rays Suppose we place between the two Nicol’s prisms, while they are at right angles, a plate cut in a peculiar manner from a crystal of quartz, we will discover that rays of light now pass through the second prism, and that the field of vision has become illuminated with beautiful colours—red, yellow, green, blue, etc., according to the thickness of the quartz plate used. On turning the second Nicol’s prism on its axis, these colours will change and pass through the regular prismatic series, from red to violet, or the contrary, according to the direction of the rotation produced by the intervening plate. Quartz, therefore, possesses the remarkable property of rotating the plane of polarisation of the coloured rays of which light is composed; and it has been discovered that some plates of this mineral exert this power to the right, others to the left; that is, they possess a right or left-handed circular polarisation. Numerous other substances, including many organic compounds, possess this quality of causing a rotation—either to the right or left—of a plane of polarised light. For example, solutions of cane sugar and ordinary glucose cause a right-handed rotation, whilst levulose and invert sugar exert a left-handed rotation. The extent of this power is directly proportional to the concentration of the solutions used, the length of the column through which the ray of polarised light passes being the same. It follows that on passing polarised light through tubes of the same length which are filled with solutions containing different quantities of impure cane sugar, an estimation of the amount of pure cane sugar contained in the tubes can be made by determining the degree of right-handed rotation produced; and it is upon this fact The light from a gas burner enters at the extremity of the instrument and first passes through the “regulator A,” which consists of the double refracting Nicol’s prism a and the quartz plate b, it being so arranged that it can be turned round its own plane, thus varying the tint of the light used, so as to best neutralise that possessed by the sugar solution to be examined. The incident ray now penetrates the polarising Nicol’s prism B, and next meets a double quartz plate C (3·75 millimetres in thickness). This quartz plate, a front view of which is also shown in the figure, is divided in the field of vision, one half consisting of quartz rotating to the right hand, the other half of the variety which rotates to the left hand. It is made of the thickness referred to owing to the fact that it then imparts a very sensitive tint (purple) to polarised light, and one that passes very suddenly into red or blue when the rotation of the ray is changed. Since the plate C is composed of halves which exert opposite rotary powers, these will assume different colours upon altering the rotation of the ray. After leaving the double quartz plate the light, which, owing to its passage through the Nicol’s prism B is now polarised, enters the tube D containing the solution of cane sugar under examination; this causes it to undergo a right-handed rotation. It next meets the “compensator” E, consisting of a quartz plate c, which has a right-handed rotary power, and the two quartz prisms d, both of which are cut in a wedge shape and exert a left-handed rotation. They are so arranged that one is movable and can be made to slide along the other, which is fixed, thus causing an increase or decrease in their combined thickness and rotary effect. The ray of light then passes through the analysing Nicol’s prism F, and is finally examined In the practical use of the Ventzke-Scheibler saccharimeter the method to be followed is essentially as follows: 26·048 grammes of the sugar to be tested are carefully weighed out and introduced into a flask 100 cubic centimetres in capacity; water is added, and the flask shaken until all crystals are dissolved. The solution is next decolorised by means of basic plumbic acetate, its volume made up to 100 cubic centimetres, and a little bone-black having been added if necessary, a glass tube, corresponding to P (Fig. 3) which is exactly 200 millimetres in length, and is provided with suitable caps, is completely filled with the clear filtered liquid. This is then placed in the polariscope, and protected from external light by closing the cover shown at h´. On now observing the field of vision by means of the telescope, it will be seen that the halves into which it is divided exhibit different colours. The screw M is then turned to the right until this is no longer the case, and absolute uniformity of colour is restored to the divisions of the double quartz plate C (Fig. 2). The extent to which the screw has been turned, which corresponds to the right-handed rotation caused by the sugar solution, is now ascertained on reading the scale by the aid of the glass K. The instrument under consideration is so constructed that, when solutions and tubes of the concentration and length referred to above are used, the reading on the scale gives directly the percentage of pure crystallisable cane sugar contained in the sample examined. For instance, if the zero index of the fixed scale points to 96°·5 on the movable scale, after uniformity of colour has been obtained, the sample of sugar taken contains 96·5 per cent. of pure cane sugar. The results given by the polariscope The proportion of grape sugar intentionally added to cane sugar can also be determined by the use of the polariscope, certain modifications being observed in its application. As previously stated, cane sugar is converted into a mixture of dextrose and levulose, termed invert sugar, by the action of dilute acids. While the rotary effect of dextrose upon the plane of a ray of polarised light is constant at temperatures under 100°, that exerted by levulose varies, it being reduced as the temperature is increased; hence it follows that at a certain temperature the diminished levo-rotary power of the levulose will become neutralised by the dextro-rotary effect of the dextrose, i.e. the invert sugar will be optically inactive. This temperature has been found to approximate 90°. Since dextrose is not perceptibly affected by the action of weak acids, it is evident that by converting cane sugar into invert sugar and examining the product by the polariscope at a temperature of about 90°, the presence of any added dextrose (glucose) will be directly revealed by its dextro-rotary action. This is accomplished by a method suggested by Messrs. Chandler and Ricketts, Since the results given by the foregoing method represent pure dextrose, it is necessary to first ascertain the dextro-rotary power of the particular variety of glucose probably employed for the adulteration of the sugar under examination, and then make the requisite correction. This process for the estimation of glucose is especially advantageous, in that the optical effect of the invert sugar normally present in raw cane sugars is rendered inactive. It is sometimes desirable to determine the relative proportions of the organic constituents which are present in commercial glucose. These usually consist of dextrose, maltose, and dextrine, all of which possess dextro-rotary power, but not in the same degree; that of dextrose being 52, that of maltose 139, and that of dextrine 193. An estimation of the amount of each can be made by first ascertaining the total rotary effect of the sample by means of the polariscope. P = 52 d + 139 m + 193 d', (1) in which P is the total rotation observed. Upon now treating the solution of glucose with an excess of an alkaline solution of mercuric cyanide (prepared by dissolving 120 grammes of mercuric cyanide and 25 grammes of potassium hydroxide in 1 litre of water), the dextrose and maltose contained in the sample are decomposed, leaving the dextrine unaffected. A second polariscopic reading is then made, which gives the amount of dextrine present, that is P' = 193 d', (2) from which the proportion of dextrine is calculated. Subtracting the second equation from the first, we have P - P' = 52 d + 139 m. (3) Both dextrose and maltose reduce Fehling’s solution, R = d + 0·62 m. (4) Multiplying by 52, we have 52 R = 52 d + 32·24 m, and subtract from (3), which gives P - P' - 52 R = 106·76 m, (5) whence m = P - P' - 52 R 106·76 (6) d = R - 0·62 m (7) and d' = P' 193. |