The purpose of these lectures is to discuss some of the familiar phenomena of biology in the light of modern discoveries. In the last decade of the nineteenth century many of us perceived that if any serious advance was to be made with the group of problems generally spoken of as the Theory of Evolution, methods of investigation must be devised and applied of a kind more direct and more penetrating than those which after the general acceptance of the Darwinian views had been deemed adequate. Such methods obviously were to be found in a critical and exhaustive study of the facts of variation and heredity, upon which all conceptions of evolution are based. To construct a true synthetic theory of Evolution it was necessary that variation and heredity instead of being merely postulated as axioms should be minutely examined as phenomena. Such a study Darwin himself had indeed tentatively begun, but work of a more thorough and comprehensive quality was required. In the conventional view which the orthodoxy of the day prescribed, the terms variation and heredity stood for processes so vague and indefinite that no analytical investigation of them could be contemplated. So soon, however, as systematic inquiry into the natural facts was begun it was at once found that the accepted ideas of variation were unfounded. Variation was seen very frequently to be a definite and specific phenomenon, affecting different forms of life in different ways, but in all its diversity showing manifold and often obvious indications of regularity. This observation was not in its essence novel. Several examples of definite variation had been well known to The interest of such observations could no longer be denied. The more they were examined the more apparent it became that by means of the facts of variation a new light was obtained on the physiological composition and capabilities of living things. Genetics thus cease to be merely a method of investigating theories of evolution or of the origin of species but provide a novel and hitherto untried instrument by which the nature of the living organism may be explored. Just as in the study of non-living matter science began by regarding the external properties of weight, opacity, colour, hardness, mode of occurrence, etc., noting only such evidences of chemical attributes and powers as chance spontaneously revealed; and much later proceeded to the discovery that these casual manifestations of chemical properties, rightly interpreted, afford a key to the intrinsic nature of the diversity of matter, so in biology, having examined those features of living things which ordinary observations can perceive, we come at last to realize that when studied for their own sake the properties of living organisms in respect of heredity and variation are indications of their inner nature and provide evidences of that nature which can be obtained from no other source. While such ideas were gradually forming in our minds, came the rediscovery of Mendel's work. Investigations which before had only been imagined as desirable now became easy to pursue, and questions as to the genetic inter-relations and compositions of varieties can now be definitely answered. Without prejudice Briefly put, the essence of Mendelism lies in the discovery of the existence of unit characters or factors. For an account of the Mendelian method, how it is applied and what it has already accomplished, reference must be made to other works. The Problem of Species and VarietyNowhere does our new knowledge of heredity and variation apply more directly than to the problem what is a species and what is a variety? I cannot assert that we are already in a position to answer this important question, but as will presently appear, our mode of attack and the answers we expect to receive are not those that were contemplated by our predecessors. If we glance at the history of the scientific conception of Species we find many signs that it was not till comparatively recent times that the definiteness of species became a strict canon of the scientific faith and that attempts were made to give precise limits to that conception. When the diversity of living things began to be accurately studied in the sixteenth and seventeenth Spontaneous generation being a matter of daily observation, then unquestioned, and supernatural events of all kinds being commonly reported by many witnesses, transmutation of species had no inherent improbability. Matthioli, I do not know who first emphasized the need for a clear understanding of the sense in which the term species is to be applied. In the second half of the seventeenth century Ray shows some degree of concern on this matter. In the introduction to the Historia Plantarum, 1686, he discusses some of the difficulties and lays down the principle that varieties which can be produced from the seed of the same plant are to be regarded as belonging to one species, being, I believe, the first to suggest this definition. That new species can come into existence he denies as inconsistent with Genesis 2, in which it is declared that God finished the work of Creation in six days. Nevertheless he does not wholly discredit the possibility of a "transmutation" of species, such that one species may as an exceptional occurrence give rise by seed to another and nearly In the beginning of the eighteenth century Marchant, The notion indeed of a peculiar, fixed meaning to be attached to species as distinct from variety is I think but rarely to be found categorically expressed in prae-Linnaean writings. But with the appearance of the Systema Naturae a great change supervened. Linnaeus was before all a man of order. Foreseeing the immense practical gain to science that must come from a codification of nomenclature, he invented such a system. It is not in question that Linnaeus did great things for us and made Natural History a manageable and accessible collection of facts instead of a disorderly heap; but orderliness of mind has another side, and inventors and interpreters of systems soon attribute to them a force and a precision which in fact they have not. The systematist is primarily a giver of names, as Ray with his broader views perceived. Linnaeus too in the exordium to the Systema Naturae naively remarks, that he is setting out to continue the work which Adam began in the Golden Age, to give names to the living creatures. Naming however involves very delicate processes of mind and of logic. Carried out by the light of meagre and imperfect knowledge it entails all the mischievous consequences of premature definition, and promotes facile illusions of finality. So was it with the Linnaean system. An interesting piece of biological history might be written respecting the growth and gradual hardening of the conception of Species. To readers of Linnaeus's own writings it is well known that his views cannot be summarized in a few words. Expressed as they were at various times during a long life and in various connexions, they present those divers inconsistencies which commonly reflect a mind retaining the power of development. Nothing certainly could be clearer than the often quoted declaration of the Philosophia Botanica, "Species tot numeramus quot diversae formae in principio sunt creatae," with the associated passage "Varietates sunt plantae ejusdem speciei mutatae a caussa The significance of the aphorisms that precede the lectures on the Natural Orders is not easy to apprehend. These are expressed with the utmost formality, and we cannot doubt that in them we have Linnaeus's own words, though for the record we are dependent on the transcripts of his pupils. The text of the first five is as follows: 1. Creator T. O. in primordio vestiit Vegetabile Medullare principiis constitutivis diversi Corticalis unde tot difformia individua, quot Ordines Naturales prognata. 2. Classicas has (1) plantas Omnipotens miscuit inter se, unde tot Genera ordinum, quot inde plantae. 3. Genericas has (2) miscuit Natura, unde tot Species congeneres quot hodie existunt. 4. Species has miscuit Casus, unde totidem quot passim occurrunt, Varietates. 5. Suadent haec (1-4) Creatoris leges a simplicibus ad Composita. Naturae leges generationis in hybridis. Hominis leges ex observatis a posteriori. I am not clear as to the parts assigned in the first sentence respectively to the "Medulla" and the "Cortex," beyond that Linnaeus conceived that multiformity was first brought about by diversity in the "Cortex." The passage is rendered still But however that may be, he regards this original diversity as resulting in the constitution of the Natural Orders, each represented by one individual. In the second aphorism the Omnipotent is represented as creating the genera by intermixing the individual plantae classicae, or prototypes of the Natural Orders. The third statement is the most remarkable, for in it he declares that Species were formed by the act of Nature, who by inter-mixing the genera produced Species congeneres, namely species inside each genus, to the number which now exist. Lastly, Chance or Accident, intermixing the species, produced as many varieties as there are about us. Linnaeus thus evidently regarded the intermixing of an originally limited number of types as the sufficient cause of all subsequent diversity, and it is clear that he draws an antithesis between Creator, Natura, and Casus, assigning to each a special part in the operations. The acts resulting in the formation of genera are obviously regarded as completed within the days of the Creation, but the words do not definitely show that the parts played by Nature and Chance were so limited. Recently also E. L. Greene Whatever Linnaeus himself believed to be the truth, the effect of his writings was to induce a conviction that the species It is not to be supposed that the champions of fixity were unacquainted with varietal differences and with the problem thus created, but in their view these difficulties were apparent merely, and by sufficiently careful observation they supposed that the critical and permanent distinctions of the true species could be discovered, and the impermanent variations detected and set aside. This at all events was the opinion formed by the great body of naturalists at the end of the eighteenth and beginning of the nineteenth centuries, and to all intents and purposes in spite of the growth of evolutionary ideas, it remains the guiding principle of systematists to the present day. There are 'good species' and 'bad species' and the systematists of Europe and America spend most of their time in making and debating them. In some of its aspects the problem of course confronted earlier naturalists. Parkinson for instance (1640) in introducing his treatment of Hieracium wrote, "To set forth the whole family of the Hawkeweedes in due forme and order is such a world of worke that I am in much doubt of mine own abilitie, it having lyen heavie on his shoudiers that hath already waded through them ... for such a multitude of varieties in forme pertaining to one herbe is not to be found againe in rerum natura as I thinke," and the same idea, that the difficulty lay rather in man's imperfect powers of discrimination than in the nature of the materials to be discriminated, is reflected in many treatises early and late. It was however with the great ouburst of scientific activity which followed Linnaeus that the difficulty became acute. Simultaneously vast masses of new material were being collected from all parts of the world into the museums, and the products In spite of Darwin's hopes, the acceptance of his views has led to no real improvement—scarcely indeed to any change at all in either the practice or aims of systematists. In a famous passage in the Origin he confidently declares that when his interpretation is generally adopted "Systematists will be able to pursue their labours as at present; but they will not be incessantly haunted by the shadowy doubt whether this or that form be a true species. This, I feel sure, and I speak after experience, will be no slight relief. The endless disputes whether or not some fifty species of British brambles are good species will cease." Those disputes nevertheless proceed almost exactly as before. It is true that biologists in general do not, as formerly, participate in these discussions because they have abandoned systematics altogether; but those who are engaged in the actual work of naming and cataloguing animals and plants usually debate the old questions in the old way. There is still the same divergence of opinion and of practice, some inclining to make much of small differences, others to neglect them. Not only does the work of the systematists as a whole proceed as if Darwin had never written but their attitude towards these problems is but little changed. In support of this statement I may refer to several British Museum Catalogues, much of the Biologia Centrali-Americana, Ridgway's Birds of North America, the Fauna Hawaiensis, indeed to almost any of the most important systematic publications of England, America, or any other country. These works are compiled by the most proficient Almost always the collections are arranged in such a way that the phenomena of variation are masked. Forms intermediate between two species are, if possible, sorted into separate boxes under a third specific name. If a species is liable to be constantly associated with a mutational form, the mutants are picked out, regardless of the circumstances of their origin, from the samples among which they were captured, and put apart under a special name. Only by a minute study of the original labels of the specimens and by redistributing them according to locality and dates, can their natural relations be traced. The published accounts of these collections often take no notice of variations, others make them the subject of casual reference. Very few indeed treat them as of much importance. From such indications it is surely evident that the systematists attach to the conception of species a significance altogether different from that which Darwin contemplated. I am well aware that some very eminent systematists regard the whole problem as solved. They hold as Darwin did that specific diversity has no physiological foundation or causation apart from fitness, and that species are impermanent groups, the delimitations of which are ultimately determined by environmental exigency or "fitness." The specific diversity of living things is thus regarded as being something quite different in nature from the specific diversity of inorganic substances. In practice those who share these opinions are, as might be anticipated, to be found among the 'lumpers' rather than among the 'splitters.' In their work, certainly, the Darwinian theory is actually followed as a guiding principle; unanalysed inter-gradations of all kinds are accepted as impugning the integrity of species; the underlying physiological problem is forgotten, and while the product is almost valueless as a contribution to But why is it that, with these exceptions, the consequences of the admittedly general acceptance of a theory of evolution are so little reflected in the systematic treatment of living things? Surely the reason is that though the systematist may be convinced of the general truth of the evolution theory at large, he is still of opinion that species are really distinct things. For him there are still 'good' species and 'bad' species and his experience tells him that the distinction between the two is not simply a question of degree or a matter of opinion. To some it may seem that this is mere perversity, a refusal to see obvious truth, a manifestation of the spirit of the collector rather than of the naturalist. But while recognising that from a magnification of the conception of species the systematists are occasionally led into absurdity I do not think the grounds for their belief have in recent times been examined with the consideration they deserve. The phenomenon of specific diversity is manifested to a similar degree by living things belonging to all the great groups, from the highest to the lowest, Vertebrates, Invertebrates, Protozoa, Vascular Plants, Algae, and Bacteria, all present diversities of such a kind that among them the existence of specific differences can on the whole be recognised with a similar degree of success and with very similar limitations. In all these groups there are many species quite definite and unmistakable, and others practically indefinite. The universal presence of specificity, as we may call it, similarly limited and characterised, is one of its most remarkable features. Not only is this specificity thus universally present among the different forms of life, but it manifests itself in respect of the most diverse characteristics which living things display. Species may thus be distinguished by peculiarities of form, of number, of geometrical arrangement, of chemical constitution and properties, of sexual differentiation, of development, and of many other properties. In any one or in several of these features together, species may be found distinguished from other species. It is also to be observed that the definiteness of these distinctions The proposition that animals and plants are on the whole divisible into definite and recognisable species is an approximation to the truth. Such a statement is readily defensible, whereas to assert the contrary would be palpably absurd. For example, a very competent authority lately wrote: "In the whole Lepidopterous fauna of England there is no species of really uncertain limits." We know, of course, that the phenomenon of specific diversity is complicated by local differentiation: that, in general, forms which cannot disperse themselves freely exhibit a multitude of local races, and that of these some are obviously adaptative, and that a few even owe their peculiarity to direct environmental effects. Every systematist also is perfectly aware that in dealing with collections from little explored countries the occurrence of polymorphism or even of sporadic variation may make the practical business of distinguishing the species difficult and perhaps for the time impossible; still, conceding that a great part of the diversity is due to geographical differentiation, and that some is sporadic variation, our experience of our own floras and faunas encourages the belief that if we were thoroughly familiar with these exotic productions it would usually be possible to assign their specific limitations with an approach to certainty. For apart from any question of the justice of these wider inferences, if we examine the phenomenon of specificity as it appears in those examples which are nearest to hand, surely we find signs in plenty that specific distinction is no mere consequence of Natural Selection. The strength of this proposition has lain mainly in the appeal to ignorance. Steadily with the growth of knowledge has its cogency diminished, and such a belief could only have been formulated at a time when the facts of variation were unknown. In Darwin's time no serious attempt had been made to examine the manifestations of variability. A vast assemblage of miscellaneous facts could formerly be adduced as seemingly comparable illustrations of the phenomenon "Variation." Time has shown this mass of evidence to be capable of analysis. When first promulgated it produced the impression that variability was a phenomenon generally distributed amongst living things in such a way that the specific divisions must be arbitrary. When this variability is sorted out, and is seen to be in part a result of hybridisation, in part a consequence of the persistence The advance has been from many sides. Something has come from the work of systematists, something from cultural experiments, something from the direct study of variation as it appears in nature, but progress is especially due to experimental investigation of heredity. From all these lines of inquiry we get the same answer; that what the naturalists of fifty years ago regarded as variation is not one phenomenon but many, and that what they would have adduced as evidence against the definiteness of species may not in fact be capable of this construction at all. If we may once more introduce a physical analogy, the distinctions with which the systematic naturalist is concerned in the study of living things are as multifarious as those by which chemists were confronted in the early days of their science. Diversities due to mechanical mixtures, to allotropy, to differences of temperature and pressure, or to degree of hydration, had all to be severally distinguished before the essential diversity due to variety of chemical constitution stood out clearly, and I surmise that not till a stricter analysis of the diversities of animals and plants has been made on a comprehensive scale, shall we be in a position to declare with any confidence whether there is As I have said above, it is in the cases nearest to hand that the problem may be most effectively studied. Comparison between forms from dissimilar situations contributes something; but it is by a close examination of the behaviour, especially the genetic behaviour, of familiar species when living in the presence of their nearest allies that the most direct light on the problem is to be obtained. I cannot understand the attitude of those who, contemplating such facts as this examination elicits, can complacently declare that specific difference is a mere question of degree. With the spread of evolutionary ideas to speak much of the fixity of species has become unfashionable, and yet how striking and inscrutable are the manifestations of that fixity! Consider the group of species composing the agrestis section of the genus Veronica, namely Tournefortii, agrestis, and polita. These three grow side by side in my garden, as they do in suitable situations over a vast area of the temperate regions. I have for years noticed them with some care and become familiar with their distinctions and resemblances. Never is there any real doubt as to the identity of any plant. The species show some variability, but I have never seen one which assumed any of the distinguishing features of the others. A glance at the fruits decides at once to which species a plant belongs. I find it impossible to believe that the fixity of these distinctions is directly dependent on their value as aids in the struggle for existence. The mode of existence of the three forms in so far as we can tell is closely similar. By whatever standard we reckon systematic affinity I suppose we shall agree that these species come very near indeed to each other. Bentham even takes the view that polita is a mere variety of agrestis. Now in such cases as this it has been argued that the specific features of the several types have been separately developed in as many distinct localities, and that their present association is due to subsequent redistribution. Of these Veronicas indeed we know that one, Tournefortii (= Buxbaumii) is as a matter of fact The control of Selection is loose while the conformity to specific distinction is often very strict and precise, and no less so even when several closely related species co-exist in the same area and in the same circumstances. The theory of Selection fails at exactly the point where it was devised to help: Specific distinction. Let us examine a somewhat different set of facts in the case of another pair of nearly allied species Lychnis diurna and vespertina. The two plants have much in common. Both are dioecious perennials, with somewhat similar flowers, the one crimson, the other white. Each however has its peculiarities which are discernible in almost any part of its structure, whether flower, leaf, fruit or seed, distinctions which would enable a person thoroughly familiar with the plants to determine at once from which species even a small piece had been taken. There is so much resemblance however as readily to support the surmise that the two were mere varieties of one species. Bentham, following Linnaeus, in fact actually makes this suggestion, with what propriety we will afterwards consider. Now this case is typical of many. The two forms have a wide distribution, occurring sometimes separately, sometimes in juxtaposition. L. diurna is a plant of hedgerows and sheltered situations. L. vespertina is common in fields and open spaces, where diurna is hardly ever found; but not rarely vespertina occurs in association with diurna in the places which that plant frequents. In this case I do not doubt that we have to do with organisms of somewhat different aptitudes. That L. vespertina has powers which diurna has not is shown very clearly by the fact that diurna is sometimes entirely absent from areas where vespertina can abound. Darwinian orthodoxy suggests that by a gradual process of Natural Selection either one of these two types was evolved from the other, or both from a third type. I cannot imagine that anyone familiar with the facts would propose the first hypothesis in the case of Lychnis, nor can I conceive of any process, whether gradual or sudden, by which diurna could have come out of vespertina, or vespertina out of diurna. Both however may no doubt have been derived from some original third type. It is conceivable that Lychnis macrocarpa of Boissier, a native of Southern Spain and Morocco, may be this original form. This species is said to combine a white flower (like that of L. vespertina), with capsule-teeth rolled back (like those of diurna). Why, if the common parent was strong enough to live to give rise to these two species, is it either altogether lost now, or at least absent from the whole of Northern Europe? Its two putative descendants, though so distinct from each other, are, as we have seen, able often to occupy the same ground. If they were gradually derived from a common progenitor—necessarily very like themselves—can we believe that this original But if, admitting this, we proceed to consider how the special aptitude of vespertina is constituted, or what it is that puts diurna at a disadvantage, we find ourselves quite unable to show the slightest connexion between the success of one or the One thing must be abundantly clear to all, that to treat two forms so profoundly different as one, because intermediates of unknown nature can be shown to exist between them, is a mere shirking of the difficulties, and this course indeed creates artificial obstacles in the way of those who are seeking to discover the origin of organic diversity. In the enthusiasm with which evolutionary ideas were received the specificity of living things was almost forgotten. The exactitude with which the members of a species so often conform in the diagnostic, specific features passed out of account; and the scientific world by dwelling with a constant emphasis on the fact of variability, persuaded itself readily that species had after all been a mere figment of the human mind. Without presuming to declare what future research only can reveal, I anticipate that, when variation has been properly examined and the several kinds of variability have been successfully distinguished according to their respective natures, the result will render the natural definiteness of species increasingly apparent. Formerly in such a case as that of the two Lychnis species, the series of "intermediates" was taken to be a palpable proof that vespertina "graded" to diurna. It is this fact, doubtless, upon which Bentham would have relied in suggesting The points in which very closely allied species are distinguished from each other may be found in the most diverse features of their organisation. Sometimes specific difference is to be seen in a character which we can believe to be important in the struggle, but at least as often it is some little detail that we cannot but regard as trivial which suffices to differentiate the two species. Even when the diagnostic point is of such a nature that we can imagine it to make a serious difference in the economy we are absolutely at a loss to suggest why this feature should be a necessity to species A and unnecessary to species B its nearest ally. The house sparrow (Passer domesticus) is in general structure very like the tree sparrow (P. montanus). They differ in small points of colour. For instance montanus has a black patch on the cheek which is absent in domesticus. The presence in the one species and the absence in the other are equally definite, and in both cases we are equally unable to suggest any consideration of utility in relation to these features. The two species are distinguished also by a characteristic that may well be supposed to be of great significance. In domesticus the two sexes are strongly differentiated, the cock being more ornate than the hen. On the other hand the two sexes in montanus are alike, and, if we take a standard from domesticus, we may fairly say that in montanus the hen has the colouration of the male. It is not unreasonable to suppose that such a distinction may betoken some great difference in physiological economy, but the economical significance of this perhaps important distinction is just as unaccountable as that of the seemingly trivial but equally diagnostic colour-point. I have spoken of the fixed characteristics of the two species. If we turn to a very different feature, their respective liability to albinistic variation, we find ourselves in precisely similar difficulty. Passer domesticus is a species in which individuals more or less pied occur with especial frequency, but in P. montanus such variation is extremely rare if it occurs at all. The writer of the section on Birds in the Royal Natural History (III., 1894-5, p. 393) calls attention to this fact and remarks that in that species he knows no such instance. The two species therefore, apart from any differences that we can suppose to be related to their respective habits, are characterised by small fixed distinctions in colour-markings, by a striking difference in secondary sexual characters, and by a difference in variability. In all these respects we can form no surmise as to any economic reason why the one species should be differentiated in the one way and the other in the other way, and I believe it is mere self-deception which suggests the hope that with fuller knowledge reasons of this nature would be discovered. The two common British wasps, Vespa vulgaris and Vespa germanica, are another pair of species closely allied although sharply distinguished, which suggest similar reflexions. Both usually make subterranean nests but of somewhat different materials. V. vulgaris uses rotten wood from which the nest derives a characteristic yellow colour, while V. germanica scrapes off the weathered surfaces of palings and other exposed timber, material which is converted into the grey walls of the nest. The stalk by which the nest is suspended (usually to a root) in the case of germanica passes freely through a hole in the external envelope, but vulgaris unites this external wall solidly to the stalk. In bodily appearance and structure the two species are so much alike that they have often been confounded even by naturalists, and to the untrained observer they are quite indistinguishable. There are nevertheless small points of difference which almost though not quite always suffice to distinguish the two forms. For example the yellow part of the sinus of the eyes is emarginate in vulgaris but not emarginate in germanica. V. vulgaris often has black spots on the tibiae while in germanica the In considering the meaning of the distinctions between these two wasps we meet the old problem illustrated by the Sparrows. The two species have somewhat different habits of life and we should readily expect to find differences of bodily organisation corresponding with the differences of habits. But is that what we do find? Surely not. To suppose that there is a correspondence between the little points of colour and structure which we see and the respective modes of life of the two species is perfectly gratuitous. We have no inkling of the nature of such a correspondence, how it can be constituted, or in what it may consist. Is it not time to abandon these fanciful expectations which are never realised? Everywhere both among animals and plants does the problem of specific difference reiterate itself in the same form. In view of such facts as I have related and might indefinitely multiply, the fixity of specific characters cannot readily be held to be a measure of their economic importance to their possessors. The incidence of specific fixity is arbitrary and capricious, sometimes lighting on a feature or a property which can be supposed to matter much, but as often is it attached to the most trifling of superficial peculiarities. The incidence of variability is no less paradoxical, and without investigation of the particular case no one can say what will be Dianthoecia capsincola is a common and widely distributed moth which feeds on Lychnis. It shows little variation. Dianthoecia carpophaga is another species which feeds chiefly on Silene. Its habits are very similar to those of capsincola. Like that species it has a wide geographical range and is abundant in its localities, but in contrast to the fixity of capsincola, carpophaga exhibits a complex series of varieties. Agrotis suffusa (= ypsilon) is a moth widely spread through the southern half of England. It is very constant in colour and markings. Agrotis segetum and tritici are excessively variable both in ground colour and markings, being found in an immense profusion of dissimilar forms throughout their distribution. Of these and several other species of Agrotis there are many named varieties, some of which have by various writers been regarded as specifically distinct. Of the genus Noctua many species (e. g. festiva) show a similar polymorphism, but N. triangulum, though showing some variation in certain respects, is usually very constant to its type, and the same is true of N. umbrosa. In several species of Taeniocampa, especially instabilis, the multiplicity of forms is extreme, while cruda (= pulverulenta) is a comparatively constant species. The genus Plusia contains a number of constant species, but in Plusia interrogationis we I have taken this series of cases from the Noctuid moths, but it would be as easy to illustrate the same proposition from the Geometridae or the Micro-Lepidoptera. It should be expressly noted that the variation of which I am speaking is a genuine polymorphism. Several of the species enumerated exhibit also geographical variation, possessing definite and often strikingly distinct races peculiar to certain localities; but apart from the existence of such local differentiation, stands out the fact upon which I would lay stress, that some species are excessively variable while others are by comparison constant, in circumstances that we may fairly regard as comparable. This fact is difficult to reconcile with the conventional view that specific type is directly determined by Natural Selection A polymorphism offering a parallel to that of the variable moths is afforded by the breeding plumage of the Ruff, the male of Machetes pugnax. The variety of plumage which these cocks exhibit is such that the statement that no two can be found alike is only a venial exaggeration. Newton remarks When we thus compare the polymorphism of one species with the fixity of another, and attempt to determine the causes which have led to these extraordinary contrasts, two distinct lines of argument are open to us. We may ascribe the difference either to causes external to the organisms, primarily, that is to say, to a difference in the exigencies of Adaptation under Natural Selection; or on the other hand we may conceive the difference as due to innate distinctions in the chemical and physiological constitutions of the fixed and the variable respectively. There is truth undoubtedly in both conceptions. If the mole were physiologically incapable of producing an albino that variety would not have come into being, and if the albino were totally incapable of getting its living it would not be able to hold its Compare the condition of a variable form like the male Ruff (or in a less degree the Red Grouse in both its sexes) with that of the common Pheasant which is comparatively constant. In the Pheasant no doubt variations do occur as in other wild birds, but apart from the effects of mongrelisation the species is unquestionably uniform. Could it seriously be proposed that we should regard the constancy of the pheasant's plumage in this country as depending on the special fitness of that type of colouration? Even if the pheasant be not an alien in Western Europe, it has certainly been protected for centuries, and for a considerable period has existed in a state of semi-domestication. Such conditions should give good opportunity for polymorphism to be produced. In some coverts various aberrations do of course occur and persist, yet there is nothing indicative of a general relaxation of the fixity of the specific type, and the pheasant remains substantially a fixed species. As soon as it is realised how largely the phenomena of variation and stability must be an index of the internal constitution of organisms, and not mere consequences of their relations to the outer world, such phenomena acquire a new and more profound significance. |