Even the most general survey of the Vascular Cryptogams would not be complete without an attempt to indicate the means of reproduction to be observed in these plants. The subject is one which might well be treated at great length, for there is scarcely any species which does not present some interesting point that calls for comment. Within the limits of the present inquiry it will not be possible to give more than an outline of the reproductive schemes to be observed in a few typical species. These life histories must not be taken as necessarily applying to all the related plants. None the less, by a careful study of the species described we may receive a fair conception of the habits of the class to which it belongs. Incidentally it may be mentioned that even a low-power microscope will be an enormous help in studying the life histories of the Vascular Cryptogams; but if this is not possible, a pocket-lens will help to a better understanding of many of the points described. For the study of the life history of a Fern one cannot do better than take the commonest of our native species, the Male Fern (Nephrodium filix-mas). Seeing that the general aspects of the plant are fully described in a later chapter, The manner in which the spores originate in the sporangium calls for comment. In the case of the Male Fern these arise owing to the repeated division of a single cell. At a certain stage in the process there are produced what are known as mother cells. Ultimately these divide twice, and the resulting cells represent the spores. When ripe, the spores become kidney-shaped and the wall of the cell takes on a rich brown colour. In the different kinds of Ferns, the form of the spore and the sculpturing of its walls vary a great deal. Thus the spores may be globular, oval, or angular in shape; whilst the exterior may be quite plain, or, perhaps, most beautifully marked. The number of spores produced in the sporangium of a Male Fern is usually some forty-eight to sixty-four, although in other species there might be less than the lower figure or more than the higher. To the naked eye the spores appear to be so much dust, and as they are comparatively light they float away on the breezes, and often enough travel for a considerable distance before coming to rest. As a rule the bursting of the sporangia takes place during dry weather. There is a real advantage in this, for when the spores are damp they hang together in masses and in such a state a wide dispersal would be out of the question. The best thing that can happen to the spore is that it should settle upon some moist soil. Here it may be mentioned a most instructive experiment is the sowing of a few fern spores. This may be carried out in ordinary garden soil, although it is wise to sterilize it before use. All soil contains the germs of such organisms as mould which, in cultivation at any rate, is especially destructive to developing spores. The plan is to bake the mould in an oven until it is so hot that one cannot bear to touch it. We shall get any number of spores from the fertile leaf of a Male Fern by just tapping the frond whilst holding it over the surface of the soil. Do not scatter the spores too thickly, or it will be difficult to examine the stages of development, and remember also that the soil should be moist at the start. The results of this spore culture are always more satisfactory if the soil is covered with a bell-glass—an ordinary tumbler would do if nothing better is available. Water must be given as necessary, though do not swamp the soil; the best plan is to let the liquid in a few drops at a time. In the case of the Male Fern the germination of the spore will start in about eight days, but in other species the period varies. Many of the succeeding stages cannot be intelligently followed except with the aid of a microscope. The first thing which happens to the germinating spore is the development of a root hair which helps in fixing the process to the soil. A system of cell division now commences in the other portion of the spore which results in the formation of a green filament, every cell of which is capable of producing root hairs. This filament is the beginning of the body, The manner of fertilization may be briefly outlined, although the observation of this is beyond the ordinary student. With Ferns, as is the case with nearly all the Cryptogams, the fertilization takes place under water; the moisture may be the outcome of heavy rain or even dew. However that may be, as soon as the underside of the prothallus has become thoroughly wetted the antheridia open, and certain little bodies called spermatozoids are allowed to escape. These are exceedingly active, and are in the form of spirally coiled bodies with a number of fine threads (cilia) at one end. The same moisture which caused the antheridia to open also brings about the opening of the archegonia. Some time ago it After the fertilization is completed the first happening is the formation of a cell-wall round the ovum. Passing through various stages of growth and subdivision it finally forms the embryo of the young plant. For a while the newly-born Fern relies upon the prothallus for sustenance, but eventually starts an independent existence. The baby sends down roots into the ground and leaves up into the air, and from thenceforward its development into a mature plant will only be a matter of time. The life histories of the Club Mosses have certain points which make them of special interest. In the first place, the manner of The life histories of the Selaginellas evidence some important differences which call for special comment. Here throughout the whole family the spore-bearing part of the plant is in the form of very definite cones. As in the case of Lycopodium there is only one sporangium to each leaf, but they are of two kinds. One, on account of the fact that it is responsible for the production of small spores, is called the microsporangium; the other, the megasporangium. The two kinds of sporangia are usually present on the same cone, although the microsporangia are as a rule higher up the stem than the megasporangia. The number of microspores produced is very large, but only four megaspores are borne in each megasporangium. The megaspores are, of course, very much larger than the microspores. The germination of the megaspores is started in the sporangium; at a certain point in their development they are shed. In the case of the microspores germination commences after the spores have fallen on to moist soil. The prothallus is exceedingly small, being little more than a group of cells forming an antheridium. Should there be sufficient moisture about, the spermatozoids which are produced by the antheridium swim towards the archegonia in any female prothallus which may be near. Fertilization then takes place, and the final outcome is the young plant. Now and again in certain species it is seen that the megaspores develop to such an extent within the sporangium that fertilization There remains to be considered the life history of the Horsetails. The spores are always produced on special processes, which are arranged in the form of a cone at the apex of the stem. The sporangia are borne on curious scales which are supported by stalks placed in the centre. These scales are arranged in whorls round the centre of the stem, and there may be twenty or more in each row. On the underside of these scales we shall find the sporangia—almost any number of them up to ten. Each sporangium produces a considerable number of spores, so that every cone is responsible for an enormous number. These spores are all of one kind, and they are so singular that they are worth a somewhat detailed description. The covering of the spore really consists of four layers, the outermost of which is split spirally in such a way that two long arms with flattened ends are produced. As long as the spore is damp these remain closely gathered round, but under dry conditions they are stretched out. The movements of these arms or elaters, as they are called, are readily watched under a microscope. By gently breathing on the spores we bring them under the influence of moist air, and this causes the elaters to curl up; after a while, however, when they become dry, the arms stretch out again. It is not certainly known what is the use of these elaters. A very little observation shows that the opening and closing of the arms keeps the spores on the move; this would aid dispersal at the time of the bursting of the sporangium. Another point which is worth consideration is that although the spores appear to be exactly the same, yet The spores of the Horsetails are not long in developing after they have settled in a damp situation. The actual forms which the prothalli take are often very irregular. That of the male prothallus is usually rather small; on the other hand, the female prothallus is sometimes large, and may have complicated branchings. As in the case of the other Vascular Cryptogams which have been considered, spermatozoids are produced in the antheridia. These are very active, and travel through the agency of water to the archegonia on the female prothallus. The spermatozoids unite with the various egg cells, and in this way an embryo is formed which finally develops into the mature plant. Owing to the fact that the prothalli of the Horsetails have proved to be excessively difficult to cultivate, the life history has not been so completely worked out as in the case of the Ferns and Club Mosses. One interesting point in connection with the cultivation of Horsetail spores has been brought to light. Whenever the spores are growing on poor soil, by far the larger number of them produce antheridia. On the other hand, where there is plenty of nourishment the tendency is all the other way. The matter is of interest, as it appears to show that the amount of available nutriment is a definite factor in the determination of sex. |