The nature of life has excited the interest of human beings from the earliest times. Although it is still not known what life is, the characteristics that set living things apart from lifeless matter are well known. One feature common to all living things, from one-celled creatures to complex animals like man, is that they are all composed of microscopic units known as cells. The cell is the smallest portion of any organism that exhibits the properties we associate with living material. In spite of the immense variety of sizes, shapes, and structures of living things, they all have this in common: They are composed of cells, and living cells contain similar components that operate in similar ways. One might say that life is a single process and that all living things operate on a single plan. The past few years have been a time of rapid progress in our understanding of the mechanisms that control the function of living systems. This progress has been made possible by the development of new experimental techniques and by the perfection of instruments that detect what happens in the tiny world of molecules. Prominent among the methods that have contributed to the explosive growth In this booklet we shall attempt to give an account, in chemical terms, of the materials from which living matter is made and of some of the chemical reactions that underlie the manifestations and the maintenance of life. To accomplish this, we have chosen to describe three types of molecules that have become the basis of modern biology: deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and proteins. We will show how radioactive isotopes can be used to pry into the innermost secrets of these substances. Before we can understand the function of these precious molecules, however, it will be necessary to review the structure of a cell and the physical nature of radioactive isotopes. |