Green, which occupies the middle station in the natural scale of colours and in relation to light and shade, is the second of the secondary colours. It is composed of the extreme primaries, yellow and blue, and is most perfect in hue when constituted in the proportions of three of yellow to eight of blue of equal intensities; because such a green will exactly neutralize and contrast a perfect red in the ratio of eleven to five, either of space or power. Of all compound colours, green is the most effective, distinct, and striking, causing surprise and delight when first produced by a mixture of blue and yellow, so dissimilar to its constituents does it appear to the untutored eye. Compounded with orange, green converts it into the one extreme tertiary citrine; while mixed with purple, it becomes the other extreme tertiary olive: hence its relations and accordances are more general, and its contrasts more agreeable with all colours, than those of any other individual These attributes of green, which render it so universally effective in contrasting colours, cause it also to become the least useful in compounding them, and the most apt to defile other colours in mixture. Nevertheless it forms valuable semi-neutrals of the olive class with black, for of such subdued tones are those greens by which the more vivid tints of nature are opposed. Accordingly, the various greens of foliage are always more or less semi-neutral in hue. As green is the most general colour of vegetal nature and principal in foliage; so red, its harmonizing colour, with compounds of red, is most general and principal in flowers. Purple flowers are commonly contrasted with centres or variegations of bright yellow, as blue flowers are with like relievings of orange; and there is a prevailing hue, or character, in the green colour of the foliage of almost every plant, by which it is harmonized with the colours of its flowers. The number of pigments of any colour is in general proportioned to its importance; hence the variety of greens is very great, though the classes of those in common use are not very numerous. Of the three secondaries, green is the colour most often met with, and, consequently, the most often compounded: for this last reason, perhaps, the palette is somewhat deficient in really good original greens—more deficient than there is any necessity for. CHROME OXIDES.By numerous methods both wet and dry, oxides of chromium are obtainable pale and deep, bright and subdued, warm and cool, opaque and transparent: sometimes hydrated, in which case they cannot be employed in enamelling; and sometimes anhydrous, when they are admissible therein. But whatever their properties may be, chemical, physical, or artistic, they are all strictly stable. Neither giving nor receiving injury by admixture, equally unaffected by foul gas and exposure to light, air, or damp, these oxides are perfectly unexceptionable in every respect. 175. OXIDE OF CHROMIUM,Opaque Oxide of Chromium, Green Oxide of Chromium, Chrome Oxide, True Chrome Green, Native Green, &c., is found native in an impure state as Chrome Ochre, but is always artificially prepared for artistic use. Obtained anhydrous by dry modes, this is the only chrome oxide available in enamelling, and is the one seen on superior porcelain. It is a cold, sober sage green, deep-toned, opaque, and, although dull, agreeable to the eye. Its tints with white are peculiarly delicate and pleasing, possessing a silvery luminous quality, and giving the effect of atmosphere. Being very dense and powerful, it must be employed with care to avoid heaviness, and is preferably diluted with a large quantity of white, or compounded with transparent yellow. In the hands of a master, this gray-green furnishes lustrous hues with brown pink, Italian pink, and Indian yellow; three beautiful but 176. TRANSPARENT OXIDE OF CHROMIUMbeing deficient in body, is only eligible in oil. A very pale greyish-white green in powder, it gives an agreeable yellowish green of some depth in oil, moderately bright, but not very pure or clear. We are acquainted with another transparent chrome oxide of far greater beauty, brightness, purity, and clearness than the above. Of a bluish green hue, a difficulty in getting it to mix with oil renders it at present unavailable. 177. VERONESE GREEN,or French Veronese Green, is a comparatively recent introduction, similar in colour and general properties to the following; beside which, however, it appears dull, muddy, and impure. It is often adulterated with arsenic to an enormous extent, which interferes with its transparency, 178. VIRIDIANis a still later addition to the palette, and the only permanent green which can be described as gorgeous, being not unlike the richest velvet. Pure and clear as the emerald, it may be called the Prussian Blue of Greens, of such richness, depth, and transparency is it. In hue of a bluish-green, its deepest shades verge on black, while its light tints are marked by transparent clearness unsurpassed. No compound of blue and yellow will afford a green at once so beautiful and stable, so gifted with the quality of light, and therefore so suited for aerial and liquid effects. Used with aureolin, it gives foliage greens sparkling with sunshine; and, fitly compounded, will be found invaluable for the glassy liquidity of seas, in painting which it becomes incumbent to employ pigments more or less transparent. "The general failing in the representation of the sea is, that instead of appearing liquid and thin, it is made to bear the semblance of opacity and solidity. In order to convey the idea of transparency, some object is often placed floating on the wave, so as to give reflection; and it is strange that we find our greatest men having recourse to this stratagem. To say it is not true in all cases, is saying too much; but this we do As viridian, like the sea, is naturally "liquid and thin, bright and glassy," the extract we have quoted from Mr. Penley, points to this green as a pigment peculiarly adapted for marine painting; in which, it may be added, its perfect permanence and transparency will be appreciated in glazing. Its fitness for foliage has been remarked; but in draperies the colour will prove equally useful, and in illumination will be found unrivalled. In the last branch of art, indeed, viridian stands alone, not only through its soft rich brilliancy, but by the glowing contrast it presents with other colours: employed as a ground, it throws up the reds, &c., opposed to it, in a marvellous manner. Like the three preceding oxides of chromium, viridian neither injures nor COPPER GREENSare commercially known as Emerald Green, Malachite Green, Scheele's Green, Schweinfurt Green, Verdigris, Green Bice, Green Verditer, Brunswick Green, Vienna Green, Hungary Green, Green Lake, Mineral Green, Patent Green, Mountain Green, Marine Green, Saxon Green, French Green, African Green, Persian Green, Swedish Green, Olympian Green, Imperial Green, Mitis Green, Pickle Green, &c. The general characteristics of these greens are brightness of colour, well suited to the purposes of house-painting, but seldom adapted to the modesty of nature in fine art; considerable permanence, except when exposed to the action of damp and impure air, which ultimately blacken most of them; and good body. They have a tendency to darken by time, dry well as a rule in oil, and are all more or less poisonous, even those not containing arsenic. 179. EMERALD GREEN,Schweinfurt Green, Vienna Green, Imperial Green, Brunswick Green, Mitis Green, &c., is a cupric aceto-arsenite, prepared on the large scale by 180. SCHEELE'S GREEN,or Swedish Green, resembles the preceding variety Upon the lavish use of this dangerous pigment in colouring toys, dresses, paper-hangings, artificial leaves, and even cheap confectionery, it is not our province to enlarge: the constant-recurring diseases and deaths, which, directly or indirectly, result from the employment of arsenical pigments, are such every-day facts that they are merely deplored and forgotten. With arsenic on our heads, our clothes, our papers, our sweets, our children's playthings, we are so accustomed to live—and die—in a world of poison, that familiarity with it has bred contempt. Into the fatal popularity, therefore, of arsenical colours for decorative purposes, we shall not further enter; but it behoves us to deprecate their presence, and the presence of all poisonous pigments, in colour-boxes for the young. It is one of the pleasures of childhood to suck anything attractive that comes in its way, openly if allowed, furtively otherwise: and as in early life we have a preference for brilliancy, so vivid a pigment as 181. MALACHITE GREEN,or Mountain Green, is met with in Cumberland, and is also found in the mountains of Kernhausen, whence it is sometimes called Hungary Green. It is prepared from malachite, a beautiful copper ore employed by jewellers, and is a hydrated dicarbonate of copper, combined with a white earth, and often striated with veins of mountain blue, to which it bears the same relation that green verditer bears to blue verditer. The colour, which may be extracted from the stone by the process followed for native ultramarine, varies from emerald-green to grass-green, and inclines to grey. It has been held in great esteem by some, and considered strictly stable, on the assumption, probably, that a pigment obtained from a stone like ultramarine, and by the same method, could not be otherwise than permanent. That it is so, with respect to light and air, there is no denying; but the green, when separated from the ore and purified for artistic use, is merely a carbonate of copper, and therefore sub |
PERMANENT YELLOWS. | PERMANENT BLUES. |
---|---|
Aureolin. | Cerulian Blue. |
Cadmium Yellow, pale. | Cobalt Blue. |
Cadmium Yellow, deep. | Genuine Ultramarine. |
Lemon Yellow. | Brilliant Ultramarine. |
Mars Yellow. | French Ultramarine. |
Naples Yellow, modern. | New Blue. |
Ochres. | Permanent Blue. |
Orient Yellow. | |
Raw Sienna. |
The foregoing yellows and blues are in no wise inimical to each other, and yield the best mixed greens, chemically considered, the palette can afford. In an artistic sense, we confess, the result is not so satisfactory: the list of blues, it must be admitted, being somewhat scant. Among the latter there is no pigment with the wonderful depth, richness, and transparency of Prussian blue, and none consequently which will furnish with yellow a green of similar quality. That the artist, therefore, will dispense with Prussian blue, it would be too much to expect. There is, however, less necessity for it since the introduction of viridian, a green resembling that which is produced by admixture of Prussian blue and yellow, and which may be varied in hue by being compounded with aureolin or ultramarine. Our object in this work is to give precedence to
184. BRONZE,
and the three succeeding varieties, are greens resembling each other in being semi-stable, and more or less transparent. Bronze is a species of Prussian green, of a dull blue-black hue. In its deep washes it appears a greenish-black with a coppery cast. It is used in ornamental work, and sometimes as a background tint for flower pieces.
185. CHROME GREENS,
commonly so called, are compounds of chromate of lead and Prussian blue, a mixture which is also known as Brunswick Green. Fine bright greens, they are suited to the ordinary purposes
Under the names of English Green, Green Cinnabar, &c., 'new' green pigments have been from time to time introduced, which have turned out mixtures of Prussian blue and chromate of lead; not made, however, by compounding the two, but directly by processes similar to the following:—A mixed solution of the acetates of lead and iron is added to a mixed solution of the yellow prussiate and chromate of potash, the necessary acetate of iron being obtained by precipitating a solution of acetate of lead by sulphate of iron, and filtering the supernatant liquid. Or; to a solution of Prussian blue in oxalic acid, first chromate of potash is added, and then acetate of lead.
By the last process, superior and more permanent chrome greens may be produced, free from lead, by using chloride of barium or nitrate of bismuth in place of the acetate of lead. Chromate of baryta, or chromate of bismuth is then formed, neither of which acts on the Prussian blue.
It should be added that where the latter pig
186. HOOKER'S GREEN
is a compound of Prussian blue and gamboge, two pigments possessing a like degree of stability, and perfectly innocuous to each other. It is a mixture more durable and more transparent than chrome greens made with chromate of lead. There are two varieties in common use—No. 11, a light grass green, in which the yellow predominates; and No. 22, a deeper and more powerful green, with a larger amount of blue.
187. PRUSSIAN GREEN,
like the preceding, is composed of Prussian blue and gamboge; but contains a very great excess of the former, and is therefore a bluish-green of the utmost depth and transparency, verging on black in its deep washes. Yellow ochre may be employed instead of gamboge, but is not so eligible.
A true Prussian green, which has been recommended as a pigment, can be produced as a simple original colour, with a base wholly of iron. It is got by partially decomposing the yellow oxalate of protoxide of iron with red prussiate of potash. We have made this green and given it a fair trial, but our verdict is decidedly against
Another Prussian green, with a base of cobalt, is obtained by precipitating the nitrate of that metal with yellow prussiate of potash. According to the mode adopted, and the degree of heat, either a light or dark green results; but this also is inferior in colour, and presents no advantage as to permanence.
188. SAP GREEN,
Verde Vessie, or Iris Green, is a vegetal pigment prepared from the juice of the berries of the buckthorn, the green leaves of the woad, the blue flowers of the iris, &c. It is usually preserved in bladders, and is thence sometimes called Bladder Green. When good, it is of a dark colour and glossy fracture, extremely transparent, and a fine natural yellowish green. This gummy juice, inspissated and formed into a cake, is occasionally employed in flower painting. It is, however, a very imperfect pigment, disposed to attract the moisture of the atmosphere, and to mildew; while, having little durability in water and less in oil, it is not eligible in the one and is totally useless in the other.
Similar pigments, obtained from coffee-berries,
189. TERRE VERTE,
or Green Earth, is a sober bluish green with a grey cast. It is a species of ochre, containing silica, oxide of iron, magnesia, potash, and water. Not bright and of little power, it is a very durable pigment, being unaffected by strong light or impure air, and combining with other colours without injury. It has not much body, is semi-transparent, and dries well in oil. Veins of brownish or reddish ochre are often found mixed with terre verte, to the detriment of its colour; and there are varieties of this pigment with copper for their colouring matter, which, although generally brighter, are inferior in other respects, and not true terre vertes. Verona Green and Verdetto or Holy Green, are ferruginous native pigments of a warmer hue. These are met with in the Mendip Hills, France, Italy, and the island of Cyprus, and have been used as pigments from the earliest times. Rubens has availed himself much of terre verte, not in his landscapes merely, but likewise in the carnation tints in his figures of a dead Christ. It is evident that much of the glazing is done with this colour: it is, in fact, most useful in glazing; because, having only a thin substance,
In combination with Indian red and Naples yellow, terre verte forms a series of mild russet greens, of much use in middle distance.
190. Chrome Arseniate
is an agreeable apple-green colour, prepared from arseniate of potash and salts of chromic oxide. It is durable, but possesses no advantages over the chrome oxides, and is of course poisonous.
191. Cobalt Green,
Rinman's Green, Vert de Zinc or Zinc Green. True cobalt green is made by igniting a very large quantity of carbonate of zinc with a very small quantity of carbonate of cobalt. To give a green tint to an enormous proportion of the former, an inappreciable amount of the latter will suffice. Some samples which were analysed, consisted almost entirely of zinc, there being only two or three per cent. of cobalt present. This green presents an example of a pigment being chemically good and artistically bad, or at least indifferent. It is a moderately bright green, apt to vary in hue according to the mode of manufacture, permanent both alone and compounded, but so sadly deficient in body and power, as to have become almost obsolete. With other physical defects, and a colour inferior to the chrome oxides, cobalt green has never been a favourite with artists, though justly eulogised by chemists.
192. Copper Borate
is obtained by precipitating sulphate of copper with borax, washing the residue with cold water, and, after drying, igniting it, fusion being carefully avoided. In this manner, a pretty yellowish green is produced, which upon longer ignition assumes a dark green shade: the mass
193. Copper Chrome
may be prepared by several methods, but the colour is in no case so fine as Scheele's or Schweinfurt green, nor is it as stable.
194. Copper Stannate,
or Tin-Copper Green, equals in colour any of the copper greens free from arsenic. The cheapest way of making it is to heat 59 parts of tin in a Hessian crucible with 100100 parts nitrate of soda, and dissolve the mass when cold in a caustic alkali. To the clear solution, diluted with water, a cold solution of sulphate of copper is added: a reddish-yellow precipitate falls, which on being washed and dried, becomes a beautiful green. On the palette it would be superfluous, but for common purposes might be found of service.
195. Elsner's Green
is also a combination of tin and copper. It is made by adding to a solution of sulphate of copper a decoction of fustic, previously clarified by a solution of gelatine. To this mixture are
196. Green Bice,
or Green Verditer, is the same in substance as blue verditer, which is converted into green verditer by boiling. This pigment is one of the least eligible of copper greens.
197. Green Ochre.
By partially decomposing yellow ochre with prussiate of potash, we have produced a fine dark blue-green, resembling Prussian green, of great depth and transparency. There are, however, difficulties in the process; and the results do not warrant us in pronouncing this green superior or equal to a mixture of the ochre and Prussian blue.
198. Green Ultramarine
is French or artificial ultramarine before the final roasting. It is a somewhat bright bluish-green, becoming a dull greenish-blue on continued exposure. Chemically, it is not a bad colour; but artists generally have decided against it.
199. Manganese Green,
or Cassel Green. By several methods, manganate of baryta may be obtained either as an emerald-green, a bluish-green, or a pale green. The manganates, however, are decomposed by contact with organic matter; and hence the green would be liable to suffer from the vehicles employed, as well as by being compounded with animal or vegetal pigments.
200. Mineral Green
is the commercial name of Green Lakes, prepared from sulphate of copper. These vary in hue and shade, have all the properties of the common non-arsenical copper-greens, and, not being subject to change of colour by oxygen and light, stand the weather well, and are excellent for the use of the house-painter, &c. Having a tendency to darken and blacken by time and foul air, they are not eligible in the nicer works of fine art.
Another Mineral Green adopted in Germany as a substitute for the poisonous Schweinfurt green, is composed of chromate of lead, carbonate of copper, oxide of iron, and chalk. Valueless for the palette, it has not the beauty of Schweinfurt green, but is recommended as being free from arsenic. It is not, however, altogether
201. Molybdenum Green.
A clear malachite green colour, when dried, is produced from molybdate of soda and potash-chrome-alum, or from the molybdate and alum with ammonia. Being more expensive than the chrome oxides and not better, its introduction, for use by artists, would be attended with no advantage.
There is likewise obtainable a copper molybdate, by adding neutral molybdate of soda in excess to sulphate of copper. The precipitate is a very pale green colour, flocculent at first, but crystalline after washing. Like the chrome molybdate it would be superfluous as a pigment.
202. Quinine Green
is rather adapted for a dye than an artist-colour. It is furnished by acting on quinine with hypochlorite of lime, hydrochloric acid, and ammonia, successively. Thus prepared, the green resembles a resin, insoluble in water, but soluble in alcohol, and turned blue by acetic acid. Its alcoholic solution dyes silk green, and also woollen and cotton when mordanted with albumen.
203. Roman Green,
brought from Rome some years back by a President of the Royal Academy, appeared to be a mixture of Prussian blue and Dutch or Italian pink. It was a fugitive compound, which became blue in fading.
204. Silicate of Baryta.
One part of silica heated to whiteness with three parts of baryta, yields a pale green solid mass, permanent, but deficient in colour when ground. It might be employed in enamelling.
205. Titanium Green
has been proposed as a substitute for the green arsenical pigments in common use; but, apart from its expense, the colour is very inferior to Scheele's green, &c. Titanium green is a ferrocyanide of that metal, produced by adding yellow prussiate of potash to a solution of titanic acid in dilute hydrochloric acid, and heating the mixture to ebullition rapidly. The dark green precipitate is washed with water acidulated with hydrochloric acid, and dried with great care, since it decomposes at temperatures above 100100°.
206. Uranium Green
is an oxide of a deep dull green colour, inclining to olive, and nearly black when in lumps. A durable but unattractive preparation, equalled in permanence and far surpassed in beauty by many cheaper compounds.
207. Vanadium Green
falls when ferrocyanide of potassium is added to vanadic acid dissolved in a strong acid. It is a beautiful green precipitate, but at present simply a curiosity, owing to the rarity of the metal vanadium.
Adopting our usual custom of separating the wheat from the chaff, we point to the opaque and transparent oxides of chromium, Veronese green, viridian, emerald green, Scheele's green, and terre verte, as more or less worthy of being dubbed durable.
As semi-stable, malachite green, bronze, Hooker's green, and Prussian green, must be classed.
Verdigris, chrome greens, and sap green, should be branded as fugitive: the chrome greens, because they are always commercially composed of chromate of lead and Prussian blue, two compounds which are semi-stable
A reference to the numbered italicised greens will show that there are many not known to the palette, which are nevertheless very greatly superior, as regards permanence, to some that disgrace it. Why these latter are suffered to hold their position is a mystery not easily explained: it is hard to reconcile the deplored degeneracy of modern pigments with the popularity of semi-stable and fugitive colours. Pictures do not stand, is the common cry; therefore, says the public, there are no good pigments now-a-days. To which we answer, newly built houses are constantly falling down; therefore there are no good bricks in these times. Of a truth, one conclusion is as reasonable as the other: in either case, if rotten materials be used, the result cannot be lasting; but in neither case does it follow, because such materials are employed, that there are no better obtainable. A well-built house implies a conscientious builder, and a well-painted picture implies a conscientious artist. It is because, we fear, that there are so few conscientious artists, that there are so few permanent paintings; not, certainly, because there are no good pigments. In this last belief, however, the public is encouraged by certain painters, who seek thereby to excuse their own shortcomings, forgetting that it is a bad work