CHAPTER XII. ON THE SECONDARY, GREEN.

Previous

Green, which occupies the middle station in the natural scale of colours and in relation to light and shade, is the second of the secondary colours. It is composed of the extreme primaries, yellow and blue, and is most perfect in hue when constituted in the proportions of three of yellow to eight of blue of equal intensities; because such a green will exactly neutralize and contrast a perfect red in the ratio of eleven to five, either of space or power. Of all compound colours, green is the most effective, distinct, and striking, causing surprise and delight when first produced by a mixture of blue and yellow, so dissimilar to its constituents does it appear to the untutored eye. Compounded with orange, green converts it into the one extreme tertiary citrine; while mixed with purple, it becomes the other extreme tertiary olive: hence its relations and accordances are more general, and its contrasts more agreeable with all colours, than those of any other individual colour. Accordingly it has been adopted very wisely in nature as the common garb of the vegetal creation. It is, indeed, in every respect a central or medial colour, being the contrast, compensatory in the proportion of eleven to five, of the middle primary red, on the one hand, and of the middle tertiary russet, on the other; while, unlike the other secondaries, all its hues, whether tending to blue or yellow, are of the same denomination.

These attributes of green, which render it so universally effective in contrasting colours, cause it also to become the least useful in compounding them, and the most apt to defile other colours in mixture. Nevertheless it forms valuable semi-neutrals of the olive class with black, for of such subdued tones are those greens by which the more vivid tints of nature are opposed. Accordingly, the various greens of foliage are always more or less semi-neutral in hue. As green is the most general colour of vegetal nature and principal in foliage; so red, its harmonizing colour, with compounds of red, is most general and principal in flowers. Purple flowers are commonly contrasted with centres or variegations of bright yellow, as blue flowers are with like relievings of orange; and there is a prevailing hue, or character, in the green colour of the foliage of almost every plant, by which it is harmonized with the colours of its flowers.The chief discord of green is blue; and when they approximate or accompany each other, they require to be resolved by the opposition of warm colours. It is in this way that the warmth of distance and the horizon reconciles the azure of the sky with the greenness of a landscape. Its less powerful discord is yellow, which needs to be similarly resolved by a purple-red, or its principles. In tone, green is cool or warm, sedate or gay, either as it inclines to blue or to yellow; yet in its general effects it is cool, calm, temperate, and refreshing. Having little power in reflecting light, it is a retiring colour, and readily subdued by distance: for the same reason, it excites the retina less than most colours, and is cool and grateful to the eye. As a colour individually, green is eminently beautiful and agreeable, but it is more particularly so when contrasted by its compensating colour, red, as it often is in nature, even in the green leaves and young shoots of plants and trees. "The autumn only is called the painter's season," remarks Constable, "from the great richness of the colours of the dead and decaying foliage, and the peculiar tone and beauty of the skies; but the spring has, perhaps, more than an equal claim to his notice and admiration, and from causes not wholly dissimilar,—the great variety of tints and colours of the living foliage, accompanied by their flowers and blossoms. The beautiful and tender hues of the young leaves and buds are rendered more lovely by being contrasted, as they now are, with the sober russet browns of the stems from which they shoot, and which still show the drear remains of the season that is past."

The number of pigments of any colour is in general proportioned to its importance; hence the variety of greens is very great, though the classes of those in common use are not very numerous. Of the three secondaries, green is the colour most often met with, and, consequently, the most often compounded: for this last reason, perhaps, the palette is somewhat deficient in really good original greens—more deficient than there is any necessity for.

CHROME OXIDES.

By numerous methods both wet and dry, oxides of chromium are obtainable pale and deep, bright and subdued, warm and cool, opaque and transparent: sometimes hydrated, in which case they cannot be employed in enamelling; and sometimes anhydrous, when they are admissible therein. But whatever their properties may be, chemical, physical, or artistic, they are all strictly stable. Neither giving nor receiving injury by admixture, equally unaffected by foul gas and exposure to light, air, or damp, these oxides are perfectly unexceptionable in every respect. For the most part they are eligible in water and oil, drying well in the latter vehicle, and requiring in the former much gum. They have long been known as affording pure, natural, and durable tints; but, until within the last few years, have been rather fine than brilliant greens. Lately, however, processes have been devised, yielding them almost as bright, rich, and transparent, as the carmine of cochineal itself.

175. OXIDE OF CHROMIUM,

Opaque Oxide of Chromium, Green Oxide of Chromium, Chrome Oxide, True Chrome Green, Native Green, &c., is found native in an impure state as Chrome Ochre, but is always artificially prepared for artistic use. Obtained anhydrous by dry modes, this is the only chrome oxide available in enamelling, and is the one seen on superior porcelain. It is a cold, sober sage green, deep-toned, opaque, and, although dull, agreeable to the eye. Its tints with white are peculiarly delicate and pleasing, possessing a silvery luminous quality, and giving the effect of atmosphere. Being very dense and powerful, it must be employed with care to avoid heaviness, and is preferably diluted with a large quantity of white, or compounded with transparent yellow. In the hands of a master, this gray-green furnishes lustrous hues with brown pink, Italian pink, and Indian yellow; three beautiful but fugitive pigments, of which the two last may be replaced by aureolin. Of this Mr. Penley observes, "as adapted for the colouring of foliage and herbage, it is impossible to say too much in its praise. It imparts the vividness and freshness of nature to every colour with which it is combined;" and he brackets oxide of chromium with aureolin as a compound hue "extremely useful." In flat tints, the oxide sometimes does not wash well in water.

176. TRANSPARENT OXIDE OF CHROMIUM

being deficient in body, is only eligible in oil. A very pale greyish-white green in powder, it gives an agreeable yellowish green of some depth in oil, moderately bright, but not very pure or clear.

We are acquainted with another transparent chrome oxide of far greater beauty, brightness, purity, and clearness than the above. Of a bluish green hue, a difficulty in getting it to mix with oil renders it at present unavailable.

177. VERONESE GREEN,

or French Veronese Green, is a comparatively recent introduction, similar in colour and general properties to the following; beside which, however, it appears dull, muddy, and impure. It is often adulterated with arsenic to an enormous extent, which interferes with its transparency, mars its beauty, and renders it of course rankly poisonous.

178. VIRIDIAN

is a still later addition to the palette, and the only permanent green which can be described as gorgeous, being not unlike the richest velvet. Pure and clear as the emerald, it may be called the Prussian Blue of Greens, of such richness, depth, and transparency is it. In hue of a bluish-green, its deepest shades verge on black, while its light tints are marked by transparent clearness unsurpassed. No compound of blue and yellow will afford a green at once so beautiful and stable, so gifted with the quality of light, and therefore so suited for aerial and liquid effects. Used with aureolin, it gives foliage greens sparkling with sunshine; and, fitly compounded, will be found invaluable for the glassy liquidity of seas, in painting which it becomes incumbent to employ pigments more or less transparent. "The general failing in the representation of the sea is, that instead of appearing liquid and thin, it is made to bear the semblance of opacity and solidity. In order to convey the idea of transparency, some object is often placed floating on the wave, so as to give reflection; and it is strange that we find our greatest men having recourse to this stratagem. To say it is not true in all cases, is saying too much; but this we do assert, that as a general principle it is quite false, and we prove it in this way: water has its motion, more or less, from the power of the wind; it is acted upon in the mass, and thus divided into separate waves, and these individually have their surface ruffled, which renders them incapable of receiving reflection. The exception to this will be, where the heaving of the sea is the result of some gone-by storm, when the wind is hushed, and the surface becomes bright and glassy. In this state, reflections are distinctly seen. Another exception will be in the hollow portion of the waves, as they curl over, and dash upon the shore."

As viridian, like the sea, is naturally "liquid and thin, bright and glassy," the extract we have quoted from Mr. Penley, points to this green as a pigment peculiarly adapted for marine painting; in which, it may be added, its perfect permanence and transparency will be appreciated in glazing. Its fitness for foliage has been remarked; but in draperies the colour will prove equally useful, and in illumination will be found unrivalled. In the last branch of art, indeed, viridian stands alone, not only through its soft rich brilliancy, but by the glowing contrast it presents with other colours: employed as a ground, it throws up the reds, &c., opposed to it, in a marvellous manner. Like the three preceding oxides of chromium, viridian neither injures nor is injured by other pigments; is unaffected by light, damp, or impure air; and is admissible in fresco. In enamelling it cannot be used; the colour, depending on the water of hydration, being destroyed by a strong heat.

COPPER GREENS

are commercially known as Emerald Green, Malachite Green, Scheele's Green, Schweinfurt Green, Verdigris, Green Bice, Green Verditer, Brunswick Green, Vienna Green, Hungary Green, Green Lake, Mineral Green, Patent Green, Mountain Green, Marine Green, Saxon Green, French Green, African Green, Persian Green, Swedish Green, Olympian Green, Imperial Green, Mitis Green, Pickle Green, &c.

The general characteristics of these greens are brightness of colour, well suited to the purposes of house-painting, but seldom adapted to the modesty of nature in fine art; considerable permanence, except when exposed to the action of damp and impure air, which ultimately blacken most of them; and good body. They have a tendency to darken by time, dry well as a rule in oil, and are all more or less poisonous, even those not containing arsenic.

179. EMERALD GREEN,

Schweinfurt Green, Vienna Green, Imperial Green, Brunswick Green, Mitis Green, &c., is a cupric aceto-arsenite, prepared on the large scale by mixing arsenious acid with acetate of copper and water. It differs from Scheele's Green, or cupric arsenite, in being lighter, more vivid, and more opaque. Powerfully reflective of light, it is perhaps the most durable pigment of its class, not sensibly affected by damp nor by that amount of impure air to which pictures are usually subject: indeed it may be ranked as permanent both in itself and when in tint with white. It works better in water than in oil, in which latter vehicle it dries with difficulty. Bearing the same relation to greens generally as Pure Scarlet bears to reds, its vivid hue is almost beyond the scale of other bright pigments, and immediately attracts the eye to any part of a painting in which it may be employed. Too violent in colour to be of much service, it has the effect, when properly placed, of toning down at once, by force of contrast, all the other greens in a picture. If discreetly used, it is occasionally of value in the drapery of a foreground figure, where a bright green may be demanded; or in a touch on a gaily painted boat or barge. When required, no mixture will serve as a substitute. Compounded with aureolin, it becomes softened and semi-transparent, yielding spring tints of extreme brilliancy and beauty.

180. SCHEELE'S GREEN,

or Swedish Green, resembles the preceding variety in being a compound of copper and arsenic, and therefore rankly poisonous; but differs from it in containing no acetic acid, in possessing less opacity, and in having a darker shade. It is a cupric arsenite, with the common attributes of emerald green, under which name it is sometimes sold. Of similar stability, it must not be employed with the true Naples yellow or antimoniate of lead, by which it is soon destroyed.

Upon the lavish use of this dangerous pigment in colouring toys, dresses, paper-hangings, artificial leaves, and even cheap confectionery, it is not our province to enlarge: the constant-recurring diseases and deaths, which, directly or indirectly, result from the employment of arsenical pigments, are such every-day facts that they are merely deplored and forgotten. With arsenic on our heads, our clothes, our papers, our sweets, our children's playthings, we are so accustomed to live—and die—in a world of poison, that familiarity with it has bred contempt. Into the fatal popularity, therefore, of arsenical colours for decorative purposes, we shall not further enter; but it behoves us to deprecate their presence, and the presence of all poisonous pigments, in colour-boxes for the young. It is one of the pleasures of childhood to suck anything attractive that comes in its way, openly if allowed, furtively otherwise: and as in early life we have a preference for brilliancy, so vivid a pigment as Scheele's green is an object of special attention. Artistically, it matters little whether a pigment is noxious or not, but we hold that poison should not be put into the hands of the young; and indeed are of opinion that a box of colours is about the worst present a child can receive.

181. MALACHITE GREEN,

or Mountain Green, is met with in Cumberland, and is also found in the mountains of Kernhausen, whence it is sometimes called Hungary Green. It is prepared from malachite, a beautiful copper ore employed by jewellers, and is a hydrated dicarbonate of copper, combined with a white earth, and often striated with veins of mountain blue, to which it bears the same relation that green verditer bears to blue verditer. The colour, which may be extracted from the stone by the process followed for native ultramarine, varies from emerald-green to grass-green, and inclines to grey. It has been held in great esteem by some, and considered strictly stable, on the assumption, probably, that a pigment obtained from a stone like ultramarine, and by the same method, could not be otherwise than permanent. That it is so, with respect to light and air, there is no denying; but the green, when separated from the ore and purified for artistic use, is merely a carbonate of copper, and therefore subject to the influence of damp and impure air, in common with other non-arsenical copper colours. As a pigment, native malachite green has the same composition, or very nearly the same, as that which can be artificially produced, and answers to the same tests. Water-rubs of the two varieties which we exposed to an atmosphere of sulphuretted hydrogen became equally blackened by the gas. Practically, there is little or no difference between them: both preserve their colour if kept from damp and foul air, both are injured by those agents, and both are liable to darken in time, especially when secluded from light. The artificial, however, can be obtained of a much finer colour than the natural, which it may be made to resemble by admixture with mineral gray. On the whole, they can scarcely be recommended for the palette, and are certainly inferior in durability to Scheele's and Schweinfurt greens. In fresco painting they have been pronounced admissible; but, apart from the question of damp, we should deem the conjunction of lime with carbonate of copper not favourable to permanence. By the action of alkalies, even the native green malachite may be converted into blue; and it becomes a question whether the dingy greenish-blue on some ancient monuments was not originally malachite green.


182. VERDIGRIS,

or Viride Æris, is of two kinds, common or impure, and crystallized or Distilled Verdigris, or, more properly, refined verdigris. The best is made at Montpellier in France, and is a sub-acetate of copper of a bright green colour inclining to blue. The least durable of the copper greens, it soon fades as a water-colour by the action of light, &c., and becomes first white and ultimately black by damp and foul gas. In oil, verdigris is permanent with respect to light and air, but moisture and an impure atmosphere change its colour, and cause it to effloresce or rise to the surface through the oil. It dries rapidly, and is exceptionally useful with other greens or very dark colours. In varnish it stands better; but cannot be considered safe or eligible, either alone or compounded. Vinegar dissolves it, forming a solution used for tinting maps, and formerly much employed for colouring pickles, &c.

The painters, who lived at the time when the arts were restored in Italy, used this pigment; and the bright greens seen in some old pictures are made by glazings of verdigris. It is often largely adulterated with chalk and sulphate of copper.

183. MIXED GREEN

Green, being a compound of blue and yellow, may be got by combining those colours in the several ways of working—by mixing, glazing, hatching, or otherwise blending them in the proportions of the various hues required. To obtain a pure green, which consists of blue and yellow only, a blue should be chosen tinged with yellow rather than with red, and a yellow tinged with blue. If either a blue or a yellow were taken, tinged with red, this latter colour would go to produce some grey in the compound, which would tarnish the green. The fine nature-like greens, which have lasted so well in some of the pictures of the Italian schools, appear to have been compounded of ultramarine, or ultramarine ashes and yellow. Whatever pigments are employed on a painting in the warm yellow hues of the foreground, and blue colouring of the distance and sky, are advantageous for forming the greens in landscape, &c., because they harmonize better both in colouring and chemically, and impart homogeneity to the whole: a principle conducive to a fine tone and durability of effect, and applicable to all mixed tints. In compounding colours, it is desirable not only that they should agree chemically, but that they should have, as far as possible, the same degree of durability. In these respects, aureolin and ultramarine, gamboge and Prussian blue, Indian yellow and indigo, are all judicious mixtures, although not all to be recommended.

PERMANENT YELLOWS. PERMANENT BLUES.
Aureolin. Cerulian Blue.
Cadmium Yellow, pale. Cobalt Blue.
Cadmium Yellow, deep. Genuine Ultramarine.
Lemon Yellow. Brilliant Ultramarine.
Mars Yellow. French Ultramarine.
Naples Yellow, modern. New Blue.
Ochres. Permanent Blue.
Orient Yellow.
Raw Sienna.

The foregoing yellows and blues are in no wise inimical to each other, and yield the best mixed greens, chemically considered, the palette can afford. In an artistic sense, we confess, the result is not so satisfactory: the list of blues, it must be admitted, being somewhat scant. Among the latter there is no pigment with the wonderful depth, richness, and transparency of Prussian blue, and none consequently which will furnish with yellow a green of similar quality. That the artist, therefore, will dispense with Prussian blue, it would be too much to expect. There is, however, less necessity for it since the introduction of viridian, a green resembling that which is produced by admixture of Prussian blue and yellow, and which may be varied in hue by being compounded with aureolin or ultramarine. Our object in this work is to give precedence to the chemical rather than the artistic properties of pigments, to separate the strictly stable from the semi-stable, and the semi-stable from the fugitive. A colour or a mixture may be chemically bad but artistically good, and vice versÂ; but the chemist looks upon no pigment or compound with favour unless it be perfectly permanent, and ignores its mere beauty when void of durability. Hence, all artistic considerations are set aside in our lists of permanent pigments: if it be possible to use them alone, so much the better for the permanence of painting; if not, so much the worse will it be, according to the degree of fugacity of the colours employed.

184. BRONZE,

and the three succeeding varieties, are greens resembling each other in being semi-stable, and more or less transparent. Bronze is a species of Prussian green, of a dull blue-black hue. In its deep washes it appears a greenish-black with a coppery cast. It is used in ornamental work, and sometimes as a background tint for flower pieces.

185. CHROME GREENS,

commonly so called, are compounds of chromate of lead and Prussian blue, a mixture which is also known as Brunswick Green. Fine bright greens, they are suited to the ordinary purposes of mechanic painting, but are quite unfit for the artist's craft, chrome yellow reacting upon and ultimately destroying Prussian blue when mixed therewith. For the latter, cheap cobalts and ultramarines are preferably substituted, although they do not yield greens of like power and intensity.

Under the names of English Green, Green Cinnabar, &c., 'new' green pigments have been from time to time introduced, which have turned out mixtures of Prussian blue and chromate of lead; not made, however, by compounding the two, but directly by processes similar to the following:—A mixed solution of the acetates of lead and iron is added to a mixed solution of the yellow prussiate and chromate of potash, the necessary acetate of iron being obtained by precipitating a solution of acetate of lead by sulphate of iron, and filtering the supernatant liquid. Or; to a solution of Prussian blue in oxalic acid, first chromate of potash is added, and then acetate of lead.

By the last process, superior and more permanent chrome greens may be produced, free from lead, by using chloride of barium or nitrate of bismuth in place of the acetate of lead. Chromate of baryta, or chromate of bismuth is then formed, neither of which acts on the Prussian blue.

It should be added that where the latter pigment is present, no green will serve for painting walls containing lime, as its action alters the tint of the Prussian blue.

186. HOOKER'S GREEN

is a compound of Prussian blue and gamboge, two pigments possessing a like degree of stability, and perfectly innocuous to each other. It is a mixture more durable and more transparent than chrome greens made with chromate of lead. There are two varieties in common use—No. 11, a light grass green, in which the yellow predominates; and No. 22, a deeper and more powerful green, with a larger amount of blue.

187. PRUSSIAN GREEN,

like the preceding, is composed of Prussian blue and gamboge; but contains a very great excess of the former, and is therefore a bluish-green of the utmost depth and transparency, verging on black in its deep washes. Yellow ochre may be employed instead of gamboge, but is not so eligible.

A true Prussian green, which has been recommended as a pigment, can be produced as a simple original colour, with a base wholly of iron. It is got by partially decomposing the yellow oxalate of protoxide of iron with red prussiate of potash. We have made this green and given it a fair trial, but our verdict is decidedly against it. In colour it is far from being equal to a good compound of Prussian blue and gamboge, and it assumes a dirty buff-yellow on exposure to light and air, the film of blue on the oxalate more or less disappearing.

Another Prussian green, with a base of cobalt, is obtained by precipitating the nitrate of that metal with yellow prussiate of potash. According to the mode adopted, and the degree of heat, either a light or dark green results; but this also is inferior in colour, and presents no advantage as to permanence.

188. SAP GREEN,

Verde Vessie, or Iris Green, is a vegetal pigment prepared from the juice of the berries of the buckthorn, the green leaves of the woad, the blue flowers of the iris, &c. It is usually preserved in bladders, and is thence sometimes called Bladder Green. When good, it is of a dark colour and glossy fracture, extremely transparent, and a fine natural yellowish green. This gummy juice, inspissated and formed into a cake, is occasionally employed in flower painting. It is, however, a very imperfect pigment, disposed to attract the moisture of the atmosphere, and to mildew; while, having little durability in water and less in oil, it is not eligible in the one and is totally useless in the other.

Similar pigments, obtained from coffee-berries, and named Venetian and Emerald Greens, are of a colder colour, equally defective and fugitive, and now obsolete.

189. TERRE VERTE,

or Green Earth, is a sober bluish green with a grey cast. It is a species of ochre, containing silica, oxide of iron, magnesia, potash, and water. Not bright and of little power, it is a very durable pigment, being unaffected by strong light or impure air, and combining with other colours without injury. It has not much body, is semi-transparent, and dries well in oil. Veins of brownish or reddish ochre are often found mixed with terre verte, to the detriment of its colour; and there are varieties of this pigment with copper for their colouring matter, which, although generally brighter, are inferior in other respects, and not true terre vertes. Verona Green and Verdetto or Holy Green, are ferruginous native pigments of a warmer hue. These are met with in the Mendip Hills, France, Italy, and the island of Cyprus, and have been used as pigments from the earliest times. Rubens has availed himself much of terre verte, not in his landscapes merely, but likewise in the carnation tints in his figures of a dead Christ. It is evident that much of the glazing is done with this colour: it is, in fact, most useful in glazing; because, having only a thin substance, it can be rendered pale by a small portion of white; although in the end it becomes darker by a concentration of its molecules. MÉrimÉe states that in the greater part of Alexander Veronese's works—in his Death of Cleopatra, in the Louvre, for instance—there are some demi-tints which are too green, and which it is certain were not so originally. Terre verte, therefore, must be employed with caution; and it would be well to ascertain beforehand whether a mineral colour will in time become darker than when first laid on the picture, by putting a drop of oil on the powder in its natural state. If the tone this gives to it be more intense than that which it acquires by being ground up, it may fairly be assumed that it will attain to the same degree of strength whenever, having completely dried, its molecules shall have re-united as closely as it is possible. Umber and terra di Sienna are of this class.

In combination with Indian red and Naples yellow, terre verte forms a series of mild russet greens, of much use in middle distance.


190. Chrome Arseniate

is an agreeable apple-green colour, prepared from arseniate of potash and salts of chromic oxide. It is durable, but possesses no advantages over the chrome oxides, and is of course poisonous.

191. Cobalt Green,

Rinman's Green, Vert de Zinc or Zinc Green. True cobalt green is made by igniting a very large quantity of carbonate of zinc with a very small quantity of carbonate of cobalt. To give a green tint to an enormous proportion of the former, an inappreciable amount of the latter will suffice. Some samples which were analysed, consisted almost entirely of zinc, there being only two or three per cent. of cobalt present. This green presents an example of a pigment being chemically good and artistically bad, or at least indifferent. It is a moderately bright green, apt to vary in hue according to the mode of manufacture, permanent both alone and compounded, but so sadly deficient in body and power, as to have become almost obsolete. With other physical defects, and a colour inferior to the chrome oxides, cobalt green has never been a favourite with artists, though justly eulogised by chemists.

192. Copper Borate

is obtained by precipitating sulphate of copper with borax, washing the residue with cold water, and, after drying, igniting it, fusion being carefully avoided. In this manner, a pretty yellowish green is produced, which upon longer ignition assumes a dark green shade: the mass is levigated for use. The compound has the objection of being glassy, and possessing little body, but is preferable to verdigris as to permanence.

193. Copper Chrome

may be prepared by several methods, but the colour is in no case so fine as Scheele's or Schweinfurt green, nor is it as stable.

194. Copper Stannate,

or Tin-Copper Green, equals in colour any of the copper greens free from arsenic. The cheapest way of making it is to heat 59 parts of tin in a Hessian crucible with 100100 parts nitrate of soda, and dissolve the mass when cold in a caustic alkali. To the clear solution, diluted with water, a cold solution of sulphate of copper is added: a reddish-yellow precipitate falls, which on being washed and dried, becomes a beautiful green. On the palette it would be superfluous, but for common purposes might be found of service.

195. Elsner's Green

is also a combination of tin and copper. It is made by adding to a solution of sulphate of copper a decoction of fustic, previously clarified by a solution of gelatine. To this mixture are added ten or eleven per cent. of protochloride of tin, and lastly an excess of caustic potash or soda. The precipitate is then washed and dried, whereupon it takes a green colour tinged with blue, but without the brightness or durability of the preceding stannate.

196. Green Bice,

or Green Verditer, is the same in substance as blue verditer, which is converted into green verditer by boiling. This pigment is one of the least eligible of copper greens.

197. Green Ochre.

By partially decomposing yellow ochre with prussiate of potash, we have produced a fine dark blue-green, resembling Prussian green, of great depth and transparency. There are, however, difficulties in the process; and the results do not warrant us in pronouncing this green superior or equal to a mixture of the ochre and Prussian blue.

198. Green Ultramarine

is French or artificial ultramarine before the final roasting. It is a somewhat bright bluish-green, becoming a dull greenish-blue on continued exposure. Chemically, it is not a bad colour; but artists generally have decided against it.

199. Manganese Green,

or Cassel Green. By several methods, manganate of baryta may be obtained either as an emerald-green, a bluish-green, or a pale green. The manganates, however, are decomposed by contact with organic matter; and hence the green would be liable to suffer from the vehicles employed, as well as by being compounded with animal or vegetal pigments.

200. Mineral Green

is the commercial name of Green Lakes, prepared from sulphate of copper. These vary in hue and shade, have all the properties of the common non-arsenical copper-greens, and, not being subject to change of colour by oxygen and light, stand the weather well, and are excellent for the use of the house-painter, &c. Having a tendency to darken and blacken by time and foul air, they are not eligible in the nicer works of fine art.

Another Mineral Green adopted in Germany as a substitute for the poisonous Schweinfurt green, is composed of chromate of lead, carbonate of copper, oxide of iron, and chalk. Valueless for the palette, it has not the beauty of Schweinfurt green, but is recommended as being free from arsenic. It is not, however, altogether harmless, and should not be used in confectionery or the like.

201. Molybdenum Green.

A clear malachite green colour, when dried, is produced from molybdate of soda and potash-chrome-alum, or from the molybdate and alum with ammonia. Being more expensive than the chrome oxides and not better, its introduction, for use by artists, would be attended with no advantage.

There is likewise obtainable a copper molybdate, by adding neutral molybdate of soda in excess to sulphate of copper. The precipitate is a very pale green colour, flocculent at first, but crystalline after washing. Like the chrome molybdate it would be superfluous as a pigment.

202. Quinine Green

is rather adapted for a dye than an artist-colour. It is furnished by acting on quinine with hypochlorite of lime, hydrochloric acid, and ammonia, successively. Thus prepared, the green resembles a resin, insoluble in water, but soluble in alcohol, and turned blue by acetic acid. Its alcoholic solution dyes silk green, and also woollen and cotton when mordanted with albumen.

203. Roman Green,

brought from Rome some years back by a President of the Royal Academy, appeared to be a mixture of Prussian blue and Dutch or Italian pink. It was a fugitive compound, which became blue in fading.

204. Silicate of Baryta.

One part of silica heated to whiteness with three parts of baryta, yields a pale green solid mass, permanent, but deficient in colour when ground. It might be employed in enamelling.

205. Titanium Green

has been proposed as a substitute for the green arsenical pigments in common use; but, apart from its expense, the colour is very inferior to Scheele's green, &c. Titanium green is a ferrocyanide of that metal, produced by adding yellow prussiate of potash to a solution of titanic acid in dilute hydrochloric acid, and heating the mixture to ebullition rapidly. The dark green precipitate is washed with water acidulated with hydrochloric acid, and dried with great care, since it decomposes at temperatures above 100100°.

206. Uranium Green

is an oxide of a deep dull green colour, inclining to olive, and nearly black when in lumps. A durable but unattractive preparation, equalled in permanence and far surpassed in beauty by many cheaper compounds.

207. Vanadium Green

falls when ferrocyanide of potassium is added to vanadic acid dissolved in a strong acid. It is a beautiful green precipitate, but at present simply a curiosity, owing to the rarity of the metal vanadium.


Adopting our usual custom of separating the wheat from the chaff, we point to the opaque and transparent oxides of chromium, Veronese green, viridian, emerald green, Scheele's green, and terre verte, as more or less worthy of being dubbed durable.

As semi-stable, malachite green, bronze, Hooker's green, and Prussian green, must be classed.

Verdigris, chrome greens, and sap green, should be branded as fugitive: the chrome greens, because they are always commercially composed of chromate of lead and Prussian blue, two compounds which are semi-stable in themselves, but become fugacious when compounded.

A reference to the numbered italicised greens will show that there are many not known to the palette, which are nevertheless very greatly superior, as regards permanence, to some that disgrace it. Why these latter are suffered to hold their position is a mystery not easily explained: it is hard to reconcile the deplored degeneracy of modern pigments with the popularity of semi-stable and fugitive colours. Pictures do not stand, is the common cry; therefore, says the public, there are no good pigments now-a-days. To which we answer, newly built houses are constantly falling down; therefore there are no good bricks in these times. Of a truth, one conclusion is as reasonable as the other: in either case, if rotten materials be used, the result cannot be lasting; but in neither case does it follow, because such materials are employed, that there are no better obtainable. A well-built house implies a conscientious builder, and a well-painted picture implies a conscientious artist. It is because, we fear, that there are so few conscientious artists, that there are so few permanent paintings; not, certainly, because there are no good pigments. In this last belief, however, the public is encouraged by certain painters, who seek thereby to excuse their own shortcomings, forgetting that it is a bad workman who finds fault with his tools. It has been well observed that when artists speak regrettingly of lost 'systems,' or pigments enjoyed by the mediÆvalists and unattainable now, it would be far better were they to make the best use of existing materials, and study their further development. There is no need for this cant cry of fugacity, which casts such a blight on modern art. Durable pigments are not yet obsolete, they have only to be employed and employed properly to furnish paintings equal in permanence to those of the old masters. "Titian," says Haydon, "got his colours from the colour shops on the Rialto, as we get ours from Brown's; and if Apelles or Titian were living now, they would paint just as good works with our brushes and colours as with their own."


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page