Certain Remarkable Coincidences—The Plane of Movement of a Planet—Consideration of Planes of Several Planetary Orbits—A Characteristic of the Actual Planetary Motions not to be Explained by Chance—The First Concord—The Planes not at Random—A Division of the Right Angle—Statement of the Coincidences—An Illustration by Parable—The Cause of the Coincidences—The Argument Strengthened by the Asteroids—An Explanation by the Nebular Theory. IN the present chapter, and in the two chapters which are to follow, I propose to give an outline of those arguments in favour of the nebular theory which are presented by certain remarkable coincidences observed in the movements of the bodies of our solar system. There are, indeed, certain features in the movements of the planets which would seem so inexplicable if the arrangement of the system had taken place by chance, that it is impossible not to seek for some physical explanation. We have already had occasion to refer in previous chapters to the movements of the bodies of our system. It will be our object at present to show that it is hardly conceivable that the movements could have acquired the peculiar characteristics they possess unless the solar The argument on which we are to enter is, it must be confessed, somewhat subtle, but its cogency is irresistible. For this argument we are indebted to one of the great founders of the nebular theory. It was given by Kant himself in his famous essay. We will commence with a preliminary point which relates to elementary mechanics. It may, however, help to clear up a difficult point in our argument if I now state some well-known principles in a manner specially adapted for our present purpose. Let us think of two bodies, A and S, and, for the sake of clearness, we may suppose that each of these bodies is a perfect sphere. We might think of them as billiard balls, or balls of stone, or balls of iron. We shall, however, suppose them to be formed of material which is perfectly rigid. They may be of any size whatever, large or small, equal or unequal. One of them may be no greater than a grain of mustard-seed, and the other may be as large as the moon or the earth or the sun. Let us further suppose that there is no other body in the universe by which the mutual attraction of the two bodies we are considering can be interfered with. If these two bodies are abandoned to their mutual attraction, let us now see what the laws of mechanics assure us must necessarily happen. Fig. 45.—A Spiral presented Edgewise (n.g.c. 4631; in Coma Berenices). Let A and S be simply released from initial positions of absolute rest. In these circumstances, the two points will start off towards each other. The time that must elapse before the two bodies collide will depend upon circumstances. The greater the Instead of simply releasing the two bodies A and S so that neither of them shall have any impulse tending to make it swerve from the line directly joining them, let us now suppose that we give one of the bodies. A, a slight push sideways. The question will be somewhat simpler if we think of S as very massive, while A is relatively small. If, for instance, S be as heavy as a cannon-ball, while A is no heavier than a grain of shot, then we may consider that S remains practically at rest during the movement. The small pull which A is able to give will produce no more than an inappreciable effect on S. If the two bodies come together, A will practically do all the moving. Fig. 46.—The Plane of a Planet’s We represent the movement in the adjoining figure. If A is started off with an initial velocity in the direction A T, the attraction of S will, however, make itself felt, even though A cannot move directly towards S. The body will not be allowed to travel along A T; it will be forced to swerve by the attraction of S; it will move from P to Q, gradually getting nearer to S. To enter into the details of the movement would require rather more calculation than it would be convenient to give here. Even though S is much more massive than A, we may suppose that the path which A follows is so great that the diameter of the globe S is quite insignificant in comparison with the diameter of the orbit which the smaller body describes. We shall thus regard both A and S as particles, and Kepler’s well-known law, to which we so often refer, tells us that A will revolve around S in that beautiful figure which the mathematician calls an ellipse. For our present purpose we are particularly to observe that the movement is restricted to a plane. The plane in which A moves depends entirely on the direction in which it was first started. The body will always continue to move in the same plane as that in which its motion originally commenced. This plane is determined by the point S and the straight line in which A was The case we have supposed will, of course, include that of the movement of a planet round the sun. The planet is small and represented by the body A, which revolves round the great body S, which stands for the sun. However the motion of the planet may actually have originated, it moves just as if it had received a certain initial impulse, in consequence of which it started into motion, and thus defined a certain plane, to which for all time its motion would be restricted. So far we have spoken of only a single planet; let us now suppose that a second planet, B, is also to move in revolution about the same sun. This planet may be as great as A, or bigger, or smaller, but we shall still assume that both planets are inconsiderable in comparison with S. We may assume that B revolves at the same distance as A, or it may be nearer, or further. The orbit of B might also have been in the same plane as A, or—and here is the important point—it might have been in a plane inclined at any angle whatever to the orbit of A. The two planes might, indeed, have been perpendicular. No matter how varied may be the circumstances of the two planets, the sun would accept the control of each of them; each would be guided in its own orbit, whether that orbit be a circle, or whether it be an ellipse of any eccentricity whatever. So far as the attraction of the sun is concerned, each of these In the actual solar system the circumstances are, however, very different from what we have represented in this imaginary solar system. It is the most obvious characteristic of the tracks of Jupiter and Venus, and the other planets belonging to the sun, that the planes in which they respectively move coincide very nearly with the plane in which the earth revolves. We must suppose all the orbits of our imaginary system to be flattened down, nearly into a plane, before we can transform the imaginary system of planets I have described into the semblance of an actual solar system. If the orbits of the planets had been arranged in planes which were placed at random, we may presume they would have been inclined at very varied angles. As they are not so disposed, we may conclude that the planes have not been put down at random; Two planets’ orbits might conceivably coincide or be perpendicular, or they might contain any intermediate angle. The plane of the second planet might be inclined to the first at an angle containing any number of degrees. To make some numerical estimate of the matter, we proceed as follows: If we divide the right angle into ten parts of nine degrees each (Fig. 47), then the inclination of the two planes might, for example, lie between O° and 9°, or between 18° and 27°, or between 45° and 54°, or between 81° and 90°, or in any one of the ten divisions. Let us think of the orbit of Jupiter. Then the inclination of the plane in which it moves to the plane in which the earth moves must fall into one of the ten divisions. As a matter of fact, it does fall into the angle between 0° and 9°. Fig. 47.—A Right Angle Divided into Ten Parts. The coincidences we have mentioned, remarkable as they are, represent only the first of the series. What has been said with respect to the positions of the orbits of Jupiter and Venus may be repeated with regard to the orbits of Mercury and Mars, Saturn, Uranus, and Neptune. If the tracks of these planets had been placed merely at random, their inclinations would have been equally likely to fall into any of the ten divisions. As a matter of fact, they all agree in choosing that one particular division which is adjacent to the track of the earth. If the orbits of the planets had indeed been arranged fortuitously, it is almost inconceivable that such coincidences could have occurred. Let me illustrate the matter by the following little parable. There were seven classes in a school, and there were ten boys in each class. There was one boy named Smith in the first class, but only one. There was also one Smith, but only one, in each of the The Captain sat at a table, and the seven winners were shown in to receive their prizes. “What is your name?” he said to the boy in the first class, as he shook hands with him. “Smith,” replied the boy. “Dear me,” said the Captain, “how odd that our names should be the same. Never mind, it’s a good name. Here’s your cake. Good-bye, Smith.” Then up came the boy from the second class. “What is your name?” said the Captain. “Smith, sir,” was the reply. “Dear me,” said the visitor. “This is very singular. It is indeed a very curious coincidence that two Smiths should have succeeded. Were you really chosen by drawing lots?” “Yes, sir,” said the boy. “Then are all the boys in your class named Smith?” “No, sir; I’m the only one of that name in the ten.” “Well,” said the Captain, “it really is most curious. I never heard anything so extraordinary as that two namesakes of my own should happen to be the winners. Now then for the boy from class three.” A cheerful youth advanced with a smile. “Well, at all events,” said the good-natured old boy, “your name is not Smith?” “Oh, but it is,” said the youth. The “But,” said the visitor, “this is not credible. Only once in ten million times would all the seven Smiths have drawn the white beans if left solely to chance. And do you mean to tell me that what can happen only once out of ten million times did actually happen on this occasion—the only occasion in my life on which I have attempted such a thing? I don’t believe the drawing was made fairly by lot. There must have been some interference with the operation of chance. I insist on having the lots drawn again under my own inspection.” “Yes, yes,” shouted all the other boys. But all the successful Smiths roared out, “No.” They did not feel at all desirous of another trial. They knew enough of the theory of probabilities to be aware This parable illustrates the improbability of such arrangements as we find in the planets having originated by chance. The chances against their having thus occurred are 10,000,000 to 1. Hence we find it reasonable to come to the conclusion that the We have spoken so far of the great planets only, and we have seen how the probability stands. We should also remark that there are also nearly 500 small planets, or asteroids, as they are more generally called. Among them are, no doubt, a few whose orbits have inclinations to the ecliptic larger than those of the great planets. The great majority of the asteroids revolve, however, very close to that remarkable plane with which the orbits of the great planets so nearly coincide. Every one of these asteroids increases the improbability that the planes of the orbits could have been arranged as we find them, without some special disposing cause. It is not possible or necessary to write down the exact figures. The probability is absolutely overwhelming against such an arrangement being found if the orbits of the planets had been decided by chance, and chance alone. We may feel confident that there must have been some particular circumstances accompanying the formation of the solar system which rendered it absolutely necessary for the orbits of the planets to possess this |